Описание

RS-485 (Recommended Standard 485 или EIA/ TIA -485-A) – рекомендованный стандарт передачи данных по двухпроводному полудуплексному многоточечному последовательному симметричному каналу связи. Совместная разработка ассоциаций: Electronic Industries Alliance (EIA) и Telecommunications Industry Association (TIA). Стандарт описывает только физические уровни передачи сигналов (т.е. только 1-й уровень модели взаимосвязи открытых систем OSI). Стандарт не описывает программную модель обмена и протоколы обмена. RS-485 создавался для расширения физических возможностей интерфейса RS232 по передаче двоичных данных.

Выпуски стандарта RS-485

Название: Recommended Standard 485
Electrical Characteristics of Generators and Receivers for Use in Balanced Multipoint Systems
Электрические характеристики генераторов и приёмников для использования в балансных многоточечных системах.

Разработчик: Electronics Industries Association (EIA) . Ассоциация промышленной электроники.
Выпуски стандарта:
RS-485A (Recommended Standard 485 Edition: A) год выпуска 1983.
EIA 485-A год выпуска 1986.
TIA /EIA 485-A год выпуска 1998.
TIA /EIA 485-A год редакции 2003.

Международные и национальные стандарты основанные на стандарте RS-485

ISO/IEC 8482 (1993г. действующий)
Издатель: ISO, IEC
Название: Information technology - Telecommunications and information exchange between Systems - Twisted pair multipoint interconnections .
Старые редакции:
ISO 8284 (1987г. не действующий)

ITU-T v.11 (1996г. действующий)
Издатель: INTERNATIONAL TELECOMMUNICATION UNION
Название: Electrical characteristics for balanced double-current interchange circuits opertiong at data signalling rates up to 10 Mbit/s .
Старые редакции:
ITU-T v.11 (1993г. не действующий)
CCITT v.11 (1988г. не действующий)

ANSI/ TIA -485-A (1998г. действующий)
Издатель: American National Standards Institute, ANSI
Название: Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems .

Свойства интерфейса стандарта RS-485

    Двунаправленная полудуплексная передача данных. Поток последовательных данных передаётся одновременно только в одну сторону, передача данных в другую сторону требует переключения приёмопередатчика. Приёмопередатчики принято называть "драйверами"(driver), это устройство или электрическая цепь, которая формирует физический сигнал на стороне передатчика.

    Симметричный канал связи. Для приёма/передачи данных используются два равнозначных сигнальных провода. Провода означаются латинскими буквами "А" и "В". По этим двум проводам идет последовательный обмен данными в обоих направлениях (поочередно). При использовании витой пары симметричный канал существенно повышает устойчивость сигнала к синфазной помехе и хорошо подавляет электромагнитные излучения создаваемые полезным сигналом.

    Дифференциальный (балансный способ передачи данных). При этом способе передачи данных на выходе приёмопередатчика изменяется разность потенциалов, при передаче "1" разность потенциалов между AB положительная при передаче "0" разность потенциалов между AB отрицательная. То есть, ток между контактами А и В, при передачи "0" и "1", течёт (балансирует) в противоположных направлениях.

    Многоточечность. Допускает множественное подключение приёмников и приёмопередатчиков к одной линии связи. При этом допускается подключение к линии только одного передатчика в данный момент времени, и множество приёмников, остальные передатчики должны ожидать освобождения линии связи для передачи данных.

    Низкоимпендансный выход передатчика. Буферный усилитель передатчика имеет низкоомный выход, что позволяет передавать сигнал ко многим приёмникам. Стандартная нагрузочная способность передатчика равна 32-м приёмникам на один передатчик. Кроме этого, токовый сигнал используется для работы "витой пары" (чем больше рабочий ток "витой пары", тем сильнее она подавляется синфазные помехи на линии связи).

    Зона нечувствительности. Если дифференциальный уровень сигнала между контактами АВ не превышает ±200мВ, то считается, что сигнал в линии отсутствует. Это увеличивает помехоустойчивость передачи данных.

Технические характеристики RS-485

    Допустимое число приёмопередатчиков (драйверов) 32

    Максимальная длина линии связи 1200 м (4000ft)

    Максимальная скорость передачи 10 Мбит/с

    Минимальный выходной сигнал драйвера ±1,5 В

    Максимальный выходной сигнал драйвера ±5 В

    Максимальный ток короткого замыкания драйвера 250 мА

    Выходное сопротивление драйвера 54 Ом

    Входное сопротивление драйвера 12 кОм

    Допустимое суммарное входное сопротивление 375 Ом

    Диапазон нечувствительности к сигналу ±200 мВ

    Уровень логической единицы (Uab) >+200 мВ

    Уровень логического нуля (Uab) ←200 мВ

Входное сопротивление для некоторых приёмников может быть более 12 кОм (единичная нагрузка). Например, 48 кОм (1/4 единичной нагрузки) или 96 кОм (1/8), что позволяет увеличить количество приёмников до 128 или 256. При разных входных сопротивлениях приёмников необходимо, чтобы общее входное сопротивление не было меньше 375 Ом.

Описание работы RS-485

Так как стандарт, RS-485 описывает только физический уровень процедуры обмена данными, то все проблемы обмена, синхронизации и квитирования, возлагаются на более высокий протокол обмена. Как мы уже говорили, наиболее часто, это стандарт RS-232 или другие верхние протоколы (ModBus , DCON и т.п.).

Сам RS-485 выполняет только следующие действия:

    Преобразует входящую последовательность "1" и "0" в дифференциальный сигнал.

    Передает дифференциальный сигнал в симметричную линию связи.

    Подключает или отключает передатчик драйвера по сигналу высшего протокола.

    Принимает дифференциальный сигнал с линии связи.

Если подключить осциллограф к контактам А-В (RS-485) и контактам GND-TDx(RS-232), то вы не увидите разницы в форме сигналов передаваемых в линиях связи. На самом деле, форма сигнала RS-485 полностью повторяет форму сигнала RS-232, за исключением инверсии (в RS-232 логическая единица передается напряжением -12 В, а в RS-485 +5 В).

Рис.1 Форма сигналов RS-232 и RS-485 при передаче двух символов "0" и "0".

Как видно из рис.1 происходит простое преобразование уровней сигнала по напряжению.

Хотя форма сигналов одинаковая у выше указанных стандартов, но способ их формирования и мощность сигналов различны.

Рис.2 Формирование сигналов RS-485 и RS-232

Преобразование уровней сигналов и новый способ их формирования позволил решить ряд проблем, которые в своё время не были учтены при создании стандарта RS-232.

Преимущества физического сигнала RS-485 перед сигналом RS-232

    Используется однополярный источник питания +5В, который используется для питания большинства электронных приборов и микросхем. Это упрощает конструкцию и облегчает согласование устройств.

    Мощность сигнала передатчика RS-485 в 10 раз превосходит мощность сигнала передатчика RS-232. Это позволяет подключать к одному передатчику RS-485 до 32 приёмников и таким образом вести широковещательную передачу данных.

    Использование симметричных сигналов, у которой имеется гальваническая развязка с нулевым потенциалом питающей сети. В результате исключено попадание помехи по нулевому проводу питания (как в RS-232). Учитывая возможность работы передатчика на низкоомную нагрузку, становится возможным использовать эффект подавления синфазных помех с помощью свойств "витой пары". Это существенно увеличивает дальность связи. Кроме этого появляется возможность "горячего" подключения прибора к линии связи (хотя это не предусмотрено стандартом RS-485). Заметим что в RS-232 "горячее" подключение прибора обычно приводит к выходу из строя СОМ порта компьютера.

Описание обмена данными по стандарту RS-485

Каждый приёмопередатчик (драйвер) RS-485 может находиться в одном из двух состояний: передача данных или приём данных. Переключение драйвера RS-485 происходит с помощью специального сигнала. Например, на рис.3 показан обмен данными с использованием преобразователя АС3 фирмы Овен. Режим преобразователя переключается сигналом RTS. Если RTS=1 (True) АС3 передает данные, которые поступают к нему от СОМ порта в сеть RS-485. При этом все остальные драйверы должны находиться в режиме приёма (RTS=0). По сути дела RS-485 является двунаправленным буферным мультиплексированным усилителем для сигналов RS-232.

Рис.3 Пример использования преобразователя Овен АС3.

Ситуация когда в одно время будет работать более одного драйвера RS-485 в режиме передатчика приводит к потере данных. Эта ситуация называется "коллизией". Чтобы коллизии не возникали в каналах обмена данными необходимо использовать более высокие протоколы (OSI). Такие как MODBUS, DCON, DH485 и др. Либо программы, которые напрямую работают с RS-232 и решают проблемы коллизий. Обычно эти протоколы называют 485-тыми протоколами. Хотя на самом деле, аппаратной основой всех этих протоколов служит, конечно, RS-232. Он обеспечивает аппаратную обработку всего потока информации. Программную обработку потока данных и решение проблем с коллизиями занимаются протоколы высшего уровня (Modbus и др.) и ПО.

Основные принципы реализации протоколов верхнего уровня (типа MODBUS)

Кратко рассмотрим эти протоколы, хотя они не имеют отношение к стандарту RS-485. Обычно протокол верхнего уровня включает в себя пакетную, кадровую или фреймовую организацию обмена. То есть, информация передаётся логически завершенными частями. Каждый кадр обязательно маркируется, т.е. обозначается его начало и конец специальными символами. Каждый кадр содержит адрес прибора, команду, данные, контрольную сумму, которые необходимы для организации многоточечного обмена. Чтобы избежать коллизий обычно применяют схему "ведущий"(master)-"ведомый"(slave). "Ведущий" имеет право самостоятельно переключать свой драйвер RS-485 в режим передачи, остальные драйверы RS-485 работают в режиме приёма и называются "ведомыми". Чтобы "ведомый" начал предавать данные в линию связи "ведущий" посылает ему специальную команду, которая дает прибору с указанным адресом право переключить свой драйвер в режим передачи на определенное время.

После передачи разрешающей команды "ведомому", "ведущий" отключает свой передатчик и ждет ответа "ведомого" в течение промежутка времени, который называется "таймаут". Если в течении таймаута ответ от "ведомого" не получен, то "ведущий" снова занимает линию связи. В роли "ведущего" обычно выступает программа, установленная на компьютер. Существуют и более сложная организация пакетных протоколов, которая позволяет циклически предавать роль "ведущего" от прибора к прибору. Обычно такие приборы называют "лидерами", либо говорят что приборы передают "маркер". Владение "маркером" делает прибор "ведущим", но он должен будет обязательно передать его другому прибору сети по определённому алгоритму. В основном, указанные выше протоколы, отличаются по этим алгоритмам.

Как мы видим, верхние протоколы имеют пакетную организацию и выполняются на программном уровне, они позволяют решить проблему с "коллизиями" данных и многоточечную организацию обмена данными.

Реализация приемопередатчиков (драйверов) RS-485

Многие фирмы изготовляют приемопередатчики RS485. Называют их обычно конверторы RS232 - RS485 или преобразователи RS232-RS485. Для реализации этих приборов выпускается специальные микросхемы. Роль этих микросхем сводится к преобразованию уровней сигналов RS232C к уровню сигналов RS485 (TTL/CMOS) и обратно, а также обеспечение работы полудуплексного режима.

По способу переключения в режим передачи различают приборы:

    Переключающиеся с помощью отдельного сигнала. Для перехода в режим передачи необходимо выставить активный сигнал на отдельном входе. Обычно это сигнал RST (СОМ порта). Эти приемопередатчики сейчас редко встречаются. Но, тем не менее, они иногда не заменимы. Допустим нужно прослушивать обмен данными между контроллерами промышленного оборудования. При этом, ваш приёмопередатчик не должен переходить в режим передачи, чтобы не создать коллизию в данной сети. Использование приёмопередатчика с автоматическим переключением здесь не допустимо. Пример такого конвертера Овен АС3.

    С автоматическим переключением и без проверки состояния линии. Наиболее распространённые конверторы, которые переключаются автоматически при появлении на их входе информационного сигнала. При этом они не контролируют занятость линии связи. Эти конверторы требуют осторожного применения из-за высокой вероятности возникновения коллизий. Пример конвертора Овен АС3М.

    С автоматическим переключением и с проверкой состояния линии. Наиболее продвинутые конверторы, которые могут передавать данные в сеть только при условии, что сеть не занята другими приёмопередатчиками и на входе имеется информационный сигнал.

Аппаратная реализация RS485 на примере преобразователя RS232-RS485 АС3 Овен

Рис.4 Принципиальная схема АС3 Овен.

На рис.4 представлена принципиальная схема преобразователя АС3 Овен. Этот преобразователь имеет отдельный сигнал для включения режима передачи данных. В качестве управляющего сигнала используется выходной сигнал СОМ порта RST. Если RST=1 (+12В) преобразователь передает данные с TD(Сом порта) в сеть RS485, если RST=0 (-12 В), то данные принимаются из сети RS-485 на вход RD (СОМ порта). Преобразователь работает от промышленной сети переменного тока напряжением 220 вольт. Блок питания преобразователя выполнен по импульсной схеме на базе микросхемы ТОР232N (DA1). Блок питания выдает два независимых напряжения +5В. Для приёма и преобразования полярных сигналов RS232 (±12 В) в однополярные сигналы TTL/CMOS уровня (+5 В) используется микросхема MAX232N (DD1). Данная микросхема интересна тем, что она питается от однополярного напряжения +5 В и имеет встроенные источники напряжения, которые необходимы для работы с полярными сигналами ±12 В. Для правильной работы встроенных источников напряжения к микросхеме MAX232N подключают внешние конденсаторы С14,С15,С17,С18. Кроме этого микросхема имеет по два преобразователя уровней сигналов RS-232C к TTL/CMOS в обоих направлениях.

Назначение сигналов:
RST -для переключения преобразователя в режим передачи/приёма
TD -передача данных из RS232 в RS485
RD -приём данных в RS232 из RS485

Далее сигналы RS232 преобразованные к уровню TTL/CMOS подаются на оптопары 6N137, которые осуществляют гальваническую развязку сигналов RS232 и RS485. Для передачи/приёма данных на стороне интерфейса RS485 используется микросхема DS75176 (многоточечный трансивер RS485). Данная микросхема запитана от отдельного источника напряжением +5 В. Микросхема представляет собой усилитель сигналов TTL/COMOS уровня с переключением направления передачи. Выходы DS75176 подключаются к контактам А и В через сопротивления 100 Ом, что обеспечивает ток короткого замыкания А-В в 250мА. Мощность сигнала RS485 примерно в 10 раз превышает мощность сигналов RS232. Эта микросхема усиливает сигнал до нужной мощности и обеспечивает полудуплексный режим работы.

Топология сети RS-485

Сеть RS-485 строится по последовательной шиной(bus) схеме, т.е. приборы в сети соединяются последовательно симметричными кабелями. Концы линий связи при этом должны быть нагружены согласующими резисторами- "терминаторами"(terminator), величина которых должна быть равна волновому сопротивлению кабеля связи.

Терминаторы выполняют следующие функции:

    Уменьшают отражение сигнала от конца линии связи.

    Обеспечивают достаточный ток через всю линию связи, что необходимо для подавления синфазной помехи с помощью кабеля типа "витая пара".

Если расстояние сегмента сети превышает 1200 м или количество драйверов в сегменте более 32 штук, нужно использовать повторитель (repeater), для создания следующего сегмента сети. При этом каждый сегмент сети должен быть подключен к терминаторам. Сегментом сети при этом считается кабель между крайним прибором и повторителем или между двумя повторителями.

Стандарт RS-485 не определяет, какой тип симметричного кабеля нужно использовать, но де-факто используют кабель типа "витая пара" с волновым сопротивлением 120 Ом.

Рис.6 Промышленный кабель Belden 3106A для сетей RS485

Рекомендовано использовать промышленный кабель Belden3106A для прокладки сетей RS485. Данный кабель имеет волновое сопротивление 120 Ом и двойной экран витой пары. Кабель Belden3106A содержит 4 провода. Оранжевый и белый провод представляют собой симметричную экранированную витую пару. Синий провод кабеля используется для соединения нулевого потенциала источников питания приборов в сети и называется "общий"(Common). Провод без изоляции используется для заземления оплетки кабеля и называется "дренажный" (Drain). В сегменте сети дренажный провод заземляется через сопротивление на шасси прибора, с одного из концов сегмента, чтобы не допустить протекания блуждающих токов через оплетку кабеля, при разном потенциале земли в удалённых точках.

Обычно сопротивления терминаторов и защитного заземления находится внутри прибора. Необходимо правильно подключить их с помощью перемычек или переключателей. В технической документации фирмы изготовителя приборов необходимо найти описание этих подключений.

Рис.7 Схема подключения 1747-AIC (Allen Bradley)

На рис.7 показаны соединения кабеля с промежуточными приборами сегмента сети. Для первого прибора в сегменте сети DH-485 необходимо установить перемычку 5-6 (она подключает терминатор 120 Ом, который находится внутри прибора 1747-AIC) и перемычку 1-2 (подключает дренажный провод к шасси прибора через внутреннее сопротивление). Для последнего прибора в сегменте сети нужно установить только перемычку 5-6 (подключить терминатор)

При использовании других симметричных кабелей, в особенности, когда не известно их волновое сопротивление, величину терминаторов подбирают опытным путем. Для этого необходимо установить осциллограф в середину сегмента сети. Контролируя форму прямоугольных импульсов передаваемых одним из драйверов можно сделать вывод о необходимости корректировки величины сопротивления терминатора.

Программное обеспечение для работы в сетях RS-485

Интерфейс RS-485, стал основным физическим интерфейсом для промышленных сетей передачи данных. Такие протоколы как ModBus, ProfiBus DP, DCON, DH-485 , работают по на физическом уровне RS-485.

Промышленные протоколы передачи данных часто бывают засекречены фирмами производителями. Информацию по тому или иному протоколу связи приходится собирать по крупицам.

Специалисту, работающему с промышленными сетями необходима программа для чтения всей информации передаваемой в информационных сетях. Основные секреты промышленных протоколов можно обнаружить только при всестороннем анализе переданных и полученных данных. Программа ComRead v.2.0 предназначена для сохранения и отображения данных и сервисных сигналов передаваемых в информационных сетях, которые работают по стандартам RS-232, RS-485, Bell-202 и др. Программа не только сохраняет всю информацию, но и создает временную развертку данных и сервисных сигналов. Программа ComRead v.2.0 сканирует информационный канал не влияя на его работу, то есть работает в режиме прослушивания физической среды передачи информации. Кроме того, программа может работать в режиме транслятора данных и сервисных сигналов. При этом она становится непосредственной частью информационного канала связи. Более подробно можно ознакомится с программой здесь

Возможность широковещательной передачи.

Многоточечность соединения.

Недостатки RS485

    Большое потребление энергии.

    Отсутствие сервисных сигналов.

    Возможность возникновения коллизий.

В условиях промышленного применения беспроводные линии передачи данных никогда не смогут полностью заменить проводные . Среди последних самым распространенным и надежным до сих пор остается последовательный интерфейс RS -485 . А производителем наиболее защищенных от внешних воздействий и разнообразных по конфигурации и степени интеграции приемопередатчиков для него, в свою очередь, остается компания Maxim Integrated .

Несмотря на рост популярности беспроводных сетей, наиболее надежную и устойчивую связь, особенно в жестких условиях эксплуатации, обеспечивают проводные. Правильно спроектированные проводные сети позволяют реализовать эффективную связь в промышленных приложениях и в системах автоматизированного управления производственными процессами, обеспечивая устойчивость к помехам, электростатическим разрядам и перенапряжениям. Отличительные особенности интерфейса RS-485 обусловили его широкое применение в индустрии.

Сравнение интерфейсов RS-485 и RS-422

Приемопередатчик RS-485 является наиболее распространенным интерфейсом физического уровня для реализации сетей с последовательной передачей данных, предназначенных для жестких условий эксплуатации в промышленных применениях и в системах автоматизированного управления зданиями. Данный стандарт последовательного интерфейса обеспечивает обмен данными с высокой скоростью на сравнительно большое расстояние по одной дифференциальной линии (витой паре). Основная проблема применения RS-485 в промышленности и в системах автоматизированного управления зданиями состоит в том, что электрические переходные процессы, возникающие при быстрой коммутации индуктивных нагрузок, электростатические разряды, а также импульсные перенапряжения, воздействуя на сети автоматизированных систем управления, способны исказить передаваемые данные или привести к выходу их из строя.

В настоящее время существует несколько типов интерфейсов передачи данных, каждый из которых разработан для конкретных применений с учетом требуемого набора параметров и структуры протокола. К числу интерфейсов последовательной передачи данных относятся CAN, RS-232, RS-485/RS-422, I 2 C, I 2 S, LIN, SPI и SMBus, однако RS-485 и RS-422 по-прежнему остаются наиболее надежными, особенно в жестких условиях эксплуатации.

Интерфейсы RS-485 и RS-422 во многом схожи, однако имеют некоторые существенные отличия, которые необходимо учитывать при проектировании систем передачи данных. В соответствии со стандартом TIA/EIA-422, интерфейс RS-422 специфицирован для промышленных применений с одним ведущим устройством шины данных, к которой может быть подключено до 10 ведомых устройств (рисунок 1). Он обеспечивает передачу на скорости до 10 Мбит/с, используя витую пару, что позволяет повысить помехоустойчивость и достичь максимально возможной дальности и скорости передачи данных. Типичные области применения RS-422 – автоматизация производственных процессов (производство химикатов, пищевое производство, бумажные фабрики), комплексная автоматизация производства (автомобильная и металлообрабатывающая промышленность), системы вентиляции и кондиционирования, системы безопасности, управление двигателями и контроль за перемещением объектов.

RS-485 обеспечивает более высокую гибкость благодаря возможности использования нескольких ведущих устройств на общей шине, а также увеличения максимального числа устройств на шине с 10 до 32. Согласно стандарту TIA/EIA-485, интерфейс RS-485 по сравнению с RS-422 имеет более широкий диапазон синфазного напряжения (-7…12 В вместо ±7В) и несколько меньший диапазон дифференциального напряжения (±1,5 В вместо ±2 В), что обеспечивает достаточный уровень сигнала приемника при максимальной нагрузке линии. Используя расширенные возможности многоточечной шины данных, можно создавать сети устройств, подключенных к одному последовательному порту RS-485. Благодаря высокой помехоустойчивости и возможности многоточечных подключений RS-485 является наилучшим среди последовательных интерфейсов для использования в промышленных распределенных системах, подключаемых к программируемому логическому контроллеру (PLC), графическому контроллеру (HMI) или другим контроллерам для сбора данных. Поскольку RS-485 является расширенным вариантом RS-422, все устройства RS-422 могут подключаться к шине, управляемой ведущим устройством RS-485. Типичные области применения для RS-485 аналогичны перечисленным выше областям применения RS-422, при этом более частое использование RS-485 объясняется его расширенными возможностями.

RS-485 – самый популярный промышленный интерфейс

Стандарт TIA/EIA-485 допускает использование RS-485 на расстоянии до 1200 м. На более коротких дистанциях скорости передачи данных – более 40 Мбит/с. Использование дифференциального сигнала обеспечивает интерфейсу RS-485 более высокую дальность, однако скорость передачи данных уменьшается по мере увеличения длины линии. На скорость передачи данных влияет также площадь сечения проводов линии и число устройств, подключенных к ней. При необходимости получения одновременно большой дальности и высокой скорости передачи данных рекомендуется использовать приемопередатчики RS-485 со встроенной функцией высокочастотной коррекции, например, MAX3291 . Интерфейс RS-485 может использоваться в полудуплексном режиме с применением одной витой пары проводов или в дуплексном режиме с одновременными передачей и приемом данных, что обеспечивается использованием двух витых пар (четыре провода). В многоточечной конфигурации в полудуплексном режиме RS-485 способен поддерживать до 32 передатчиков и до 32 приемников. Однако микросхемы приемопередатчиков нового поколения имеют более высокий входной импеданс, что позволяет снизить нагрузку приемника на линию от 1/4 до 1/8 стандартного значения. Например, при использовании приемопередатчика MAX13448E число приемников, подключаемых к шине RS-485, может быть увеличено до 256. Благодаря расширенному многоточечному интерфейсу RS-485 имеется возможность построения сетей различных устройств, подключенных к одному последовательному порту, как показано на рисунке 2.

Чувствительность приемника составляет ±200 мВ. Следовательно, для распознавания одного бита данных уровни сигнала в точке подключения приемника должны быть больше +200 мВ для нуля и меньше -200 мВ для единицы (рисунок 3). При этом приемник будет подавлять помехи, уровень которых находится в диапазоне ±200 мВ. Дифференциальная линия обеспечивает также эффективное подавление синфазных помех. Минимальное входное сопротивление приемника составляет 12 кОм, выходное напряжение передатчика находится в диапазоне ± 1,5…± 5 В.

Проблемы, связанные с использованием последовательного интерфейса в промышленной среде

Разработчики промышленных систем сталкиваются со сложными задачами по обеспечению их надежной эксплуатации в электромагнитной обстановке, способной вывести из строя оборудование или нарушить работу цифровых систем передачи данных. Одним из примеров подобных систем является автоматическое управление технологическим оборудованием на автоматизированном промышленном предприятии. Контроллер, управляющий процессом, измеряет его параметры, а также параметры окружающей среды, и передает команды исполнительным устройствам либо формирует аварийные оповещения. Промышленные контроллеры представляют собой, как правило, микропроцессорные устройства, архитектура которых оптимизирована для решения задач данного промышленного предприятия. Линии передачи данных топологии «точка-точка» в таких системах подвержены сильным электромагнитным помехам от воздействия окружающей среды.

Преобразователи постоянного напряжения, используемые в промышленном производстве, работают с высокими входными напряжениями и обеспечивают изолированные от входа напряжения для питания нагрузки. Для питания устройств распределенной системы, не имеющих собственного сетевого источника питания, используются напряжения 24 или 48 В DC. Питание оконечной нагрузки осуществляется напряжением 12 или 5 В, полученным путем преобразования входного напряжения. Системам, обеспечивающим связь с удаленными датчиками или исполнительными устройствами, требуется защита от переходных процессов, электромагнитных помех и разности потенциалов земли.

Многие компании, такие как Maxim Integrated, прилагают большие усилия, чтобы интегральные микросхемы для промышленных применений отличались высокой надежностью и устойчивостью к неблагоприятной электромагнитной обстановке. Приемопередатчики RS-485 производства компании Maxim содержат встроенные цепи защиты от высоковольтных электростатических разрядов и импульсных перенапряжений и обладают возможностью «горячей» замены без потери данных в линии.

Защита систем передачи данных от неблагоприятных внешних воздействий

Усиленная защита от ЭСР

Электростатический разряд (ЭСР) возникает при соприкосновении двух противоположно заряженных материалов, вследствие чего происходит перенос статических зарядов и формируется искровой разряд. ЭСР часто возникает при контакте людей с окружающими предметами. Искровые разряды, возникающие при небрежном обращении с полупроводниковыми приборами, могут существенно ухудшить их характеристики или привести к полному разрушению полупроводниковой структуры. ЭСР может возникнуть, например, при замене кабеля или простом прикосновении к порту ввода-вывода и привести к отключению порта вследствие выхода из строя одной или нескольких микросхем интерфейса (рисунок 4).

Подобные аварии могут приводить к значительным убыткам, так как повышают стоимость гарантийного ремонта и воспринимаются потребителями как следствие низкого качества продукта. В промышленном производстве ЭСР представляет собой серьезную проблему, способную причинить убытки в миллиарды долларов ежегодно. В реальных условиях эксплуатации ЭСР может привести к отказу отдельных компонентов, а иногда и системы в целом. Для защиты интерфейсов передачи данных могут использоваться внешние диоды, однако некоторые интерфейсные микросхемы содержат встроенные компоненты защиты от ЭСР и не требуют дополнительных внешних цепей защиты. На рисунке 5 показана упрощенная функциональная схема типовой встроенной цепи защиты от ЭСР. Импульсные помехи в сигнальной линии ограничиваются диодной схемой защиты на уровнях напряжения питания V CC и земли и, таким образом, защищают внутреннюю часть схемы от повреждений. Производимые в настоящее время микросхемы интерфейсов и аналоговые коммутаторы со встроенной защитой от ЭСР в основном соответствуют стандарту МЭК (IEC) 61000-4-2.

Компания Maxim Integrated инвестировала значительные средства в разработку микросхем с надежной встроенной защитой от ЭСР и в настоящее время занимает лидирующие позиции в производстве приемопередатчиков интерфейсов от RS-232 до RS-485. Данные устройства выдерживают воздействие испытательных импульсов ЭСР, соответствующих МЭК (IEC) 61000-4-2 и JEDEC JS-001, непосредственно на порты ввода-вывода. Решения компании Maxim в области защиты от ЭСР отличаются надежностью, доступностью, отсутствием дополнительных внешних компонентов и меньшей стоимостью по сравнению с большинством аналогов. Все микросхемы интерфейсов производства этой компании содержат встроенные элементы, обеспечивающие защиту каждого вывода от ЭСР, возникающих в процессе производства и эксплуатации. Приемопередатчики семейства MAX3483AE /MAX3485AE обеспечивают защиту выходов передатчиков и входов приемников от воздействия высоковольтных импульсов амплитудой до ±20 кВ. При этом сохраняется нормальный режим работы изделий, не требуется выключения и повторного включения питания. Кроме того, встроенные элементы защиты от ЭСР обеспечивают функционирование при включении и выключении питания, а также в дежурном режиме с низким энергопотреблением.

Защита от перенапряжений

В промышленных применениях входы и выходы драйверов RS-485 подвержены сбоям, возникающим в результате импульсных перенапряжений. Параметры импульсных перенапряжений отличаются от ЭСР – в то время как длительность ЭСР обычно находится в диапазоне до 100 нс, длительность импульсных перенапряжений может составлять 200 мкс и более. Причинами возникновения перенапряжений могут быть ошибки проводного монтажа, плохие контакты, поврежденные или неисправные кабели, а также капли припоя, которые могут образовывать токопроводящее соединение между силовыми и сигнальными линиями на печатной плате или в разъеме. Поскольку в промышленных системах электропитания используются напряжения, превышающие 24 В, воздействие таких напряжений на стандартные приемопередатчики RS-485, не имеющие защиты от перенапряжений, приведет к их выходу из строя в течение нескольких минут или даже секунд. Для защиты от импульсных перенапряжений обычные микросхемы интерфейса RS-485 требуют дорогостоящих внешних устройств, выполненных на дискретных компонентах. Приемопередатчики RS-485 со встроенной защитой от перенапряжений способны выдерживать синфазные помехи в линии передачи данных до ±40, ±60 и ±80 В. Компания Maxim производит линейку приемопередатчиков RS-485/RS-422 MAX13442E …MAX13444E , устойчивых к постоянным напряжениям на входах и выходах до ±80 В относительно земли. Элементы защиты функционируют независимо от текущего состояния микросхемы, – включена ли она, выключена или находится в дежурном режиме, – что позволяет характеризовать данные приемопередатчики как наиболее надежные в отрасли, идеально подходящие для промышленных применений. Приемопередатчики производства компании Maxim сохраняют работоспособность при перенапряжениях, обусловленных замыканием силовых и сигнальных линий, ошибками проводного монтажа, неправильным подключением разъемов, дефектами кабелей и неправильной эксплуатацией.

Устойчивость приемников к неопределенным состояниям линии

Важной характеристикой микросхем интерфейса RS-485 является невосприимчивость приемников к неопределенным состояниям линии, что гарантирует установку высокого логического уровня на выходе приемника при разомкнутых или замкнутых входах, а также при переходе всех передатчиков, подключенных к линии, в неактивный режим (высокоимпедансное состояние выходов). Проблема корректного восприятия приемником сигналов замкнутой линии данных решается путем смещения порогов входного сигнала до отрицательных напряжений -50 и -200 мВ. Если входное дифференциальное напряжение приемника V A – V B больше или равно -50 мВ – на выходе R 0 устанавливается высокий уровень. Если V A – V B меньше или равно -200 мВ – на выходе R 0 устанавливается низкий уровень. При переходе всех передатчиков в неактивное состояние и наличии в линии оконечной нагрузки дифференциальное входное напряжение приемника близко к нулю, вследствие чего на выходе приемника устанавливается высокий уровень. При этом запас помехоустойчивости по входу составляет 50 мВ. В отличие от приемопередатчиков предыдущего поколения, пороги -50 и -200 мВ соответствуют значениям ±200 мВ, установленным стандартом EIA/TIA-485.

Возможность «горячей» замены

Литература

  1. Application note 4491, «Damage from a Lightning Bolt or a Spark–It Depends on How Tall You Are!»;
  2. Application note 5260, «Design Considerations for a Harsh Industrial Environment»;
  3. Application note 639, «Maxim Leads the Way in ESD Protection».

Максимально возможная дальность линии RS-485 определяется, в основном, характеристиками кабеля и электромагнитной обстановкой на объекте эксплуатации. При использовании кабеля с диаметром жил

0,5 мм (сечение около 0,2 кв. мм) длина линии RS-485 – не более 1200 м,

при сечении 0,5 кв. мм – не более 3000 м.

Использование кабеля с сечением жил менее 0,2 кв. мм нежелательно.

При большой протяжённости линии RS-485 (от 100 м) использование витой пары обязательно.

Для подключения приборов к интерфейсу RS-485 необходимо контакты "A" и "B" приборов подключить соответственно к линиям A и B интерфейса. Интерфейс RS-485 предполагает использование соединения между приборами типа "шина", когда все приборы соединяются по интерфейсу одной парой проводов (линии A и B), согласованной с двух концов согласующими резисторами (рисунок 1).

Рисунок 1. Схема подключения приборов к магистральному интерфейсу RS-485

Для согласования используются резисторы сопротивлением 620 Ом, которые устанавливаются на первом и последнем приборах в линии. Большинство приборов имеет встроенное согласующее сопротивление, которое может быть включено в линию установкой перемычки («джампера») на плате прибора. Поскольку в состоянии поставки перемычки установлены, их нужно снять на всех приборах, кроме первого и последнего в линии RS-485. В преобразователях-повторителях "С2000-ПИ" согласующее сопротивление для каждого (изолированного и неизолированного) выхода RS-485 включается переключателями. В приборах "С2000-К" и "С2000-КС" встроенное согласующее сопротивление и перемычка для его подключения отсутствуют. Если прибор такого типа является первым или последним в линии RS-485, необходимо установить между клеммами "A" и "B" резистор сопротивлением 620 Ом. Этот резистор входит в комплект поставки прибора. Пульт "С2000М" ("С2000") может быть установлен в любом месте линии RS-485. Если он является первым или последним прибором в линии, между клеммами "A" и "B" устанавливается согласующий резистор 620 Ом (входит в комплект поставки). Ответвления на линии RS-485 нежелательны, так как они увеличивают искажение сигнала в линии, но практически допустимы при небольшой длине ответвлений (не более 50 метров). Согласующие резисторы на отдельных ответвлениях не устанавливаются. Ответвления большой длины рекомендуется делать с помощью повторителей "С2000-ПИ", как показано на рисунке 2.

Рисунок 2. Построение сети RS-485 c топологией "звезда" при помощи повторителей

Рисунок 3. Увеличение длины линии RS-485 с помощью повторителей интерфейса

Например, преобразователь – повторитель интерфейсов с гальванической изоляцией "С2000-ПИ" позволяет увеличить длину линии максимум на 1500 м, обеспечивает гальваническую изоляцию между сегментами линии и автоматически отключает короткозамкнутые сегменты интерфейса RS-485 .

Каждый изолированный сегмент линии RS-485 должен быть согласован с двух сторон – в начале и конце. Следует обратить внимание на включение согласующих резисторов в каждом сегменте линии RS-485: они должны быть включены переключателями в повторителях "С2000-ПИ", а не перемычками в приборах, поскольку переключатели не только подключают согласующее сопротивление, но также выдают в линию RS-485 напряжение смещения, которое необходимо для правильной работы этих повторителей. Внимание! Цепи "0В" изолированных сегментов линии между собой не объединяются. Более того, нельзя питать изолированные приборы от общего источника питания во избежание гальванической связи через общие цепи питания.
С помощью повторителей "С2000-ПИ" можно делать длинные ответвления от основной магистрали RS-485 для построения топологии "звезда". При этом должен быть согласован и сегмент, от которого делается ответвление, и каждое из ответвлений, как показано на рисунке 2. Следует обратить особое внимание, что согласующие резисторы на "С2000-ПИ" должны устанавливаться переключателями.
Следующая информация была предоставлена техподдержкой компании "Болид" в процессе переписки.
Если теряется сам пульт, то мы рекомендуем программой rs-485settings в пульте увеличить параметр "пауза перед ответом по RS-232" до 2.
Если теряется прибор «С2000-2», а пульт при этом виден, то рекомендуем проверить, правильно ли поставлены оконечные резисторы R=620 Ом, а также объединены ли "0В" приборов. На всех приборах кроме пульта "С2000" согласующее сопротивление под- ключается, если установлена соответствующая перемычка на плате прибора. Оконечные резисторы должны стоять на первом и последнем приборах.
Если все требования к интерфейсу выполнены, причиной проблемы может быть обрыв одной из линий RS485 ("A" или "B") или ее замыкание на цепь "0 В", шлейф сигнализации прибора или заземленную поверхность (например, в результате защемления ка- беля металлической коробкой двери. Обрыв одной из линий RS-485 не обязательно приведет к потере связи со всеми приборами, если цепи "0 В" приборов и "С2000-ПИ" объединены и линия RS-485 имеет небольшую длину. Но в этом случае уровни сигна- лов RS-485 будут за пределами диапазона, гарантирующего их правильное распознава- ние приемником. Замыкание на "0 В" может произойти и в цепях защиты какого - либо из приборов в результате пробоя защитного диода (представляет собой стабилитрон с большой допустимой импульсной мощностью рассеивания) или из-за заводского брака, например, в результате установки защитного диода в неверной полярности. Такой при- бор может не только сам иметь проблемы со связью с пультом по RS-485, но также мо- жет мешать всем приборам изолированной ветки.
Для начала можно прозвонить линию тестером на отсутствие обрыва или замыкания линии или выходов RS-485 приборов на "0 В". При прозвонке выходов "A" и "B" приборов нужно иметь ввиду, что в целях защиты указанные выходы зашунтированы защитными диодами, причем катод подключен к защищаемому выходу, а анод - к "0 В". Поэтому в исправном приборе в прямой полярности (плюсовой щуп тестера - к выходу, минусовой - к "0 В") выходы прозваниваться не должны, а в обратной (к выходу подключается минусовой щуп тестера), в зависимости от величины измерительного напряжения, тестер может показать низкое сопротивление, соответствующее прямому падению напряжения на диоде (т.е. около 0,6 - 0,7 В). Если выход прозванивается на 0 В в любой полярности, это говорит и "сваривании" защитного диода. Если выход прозванивается в полярности, противоположной указанной, это может свидетельствовать о заводском браке (неправильная установка защитного диода).
Также обращаем Ваше внимание на то, что схемотехника защитных цепей RS-485 в новых версиях приборов была изменена (например, у Сигналов-20П - начиная с версии 2.04). "Новые" исправные защитные цепи не прозваниваются ни в прямой, ни в обратной полярности. ВАЖНО: цепи нужно прозванивать тестером В РЕЖИМЕ ПРОЗВОНКИ ДИ- ОДОВ. В режиме измерения сопротивлений измерительное напряжение у многих тестеров меньше прямого падения напряжения на диоде, поэтому, при прозвонке новых це- пей защиты, исправная цепь защиты может мало отличаться от неисправной (в обоих случаях тестер может показать сопротивление порядка нескольких десятков кОм). Кроме прозвонки цепей "A" и "B" относительно "0 В" в обеих полярностях, имеет смысл сделать аналогичное измерение между "A" и "B" (перемычка, включающая нагрузочное сопротивление линии RS-485, должна быть снята).

Прозваниваться эти цепи не должны при любой полярности измерения (для "новых" цепей защиты).

Более точные выводы можно сделать, если исследовать сигнал в линии RS-485 с помощью осциллографа. Измеряется сигнал между линией "А" и "В" вблизи входа RS-485 прибора и пульта. Щуп осциллографа устанавливается на линию "A", общий - на линию "B" (здесь нужно быть внимательным, поскольку у некоторых осциллографов "общий" вход заземлен через заземляющий контакт вилки, что может вносить искажения или по- мехи, особенно если в системе уже есть другие точки заземления). На осциллографе должны быть видны двухполярные импульсы. Передаче "1" соответствует положитель- ная полярность, передаче "0" - отрицательная. Длина одного бита передаваемой ин- формации - около 0,1 мс. Условие достоверного приема таково: если на входе прием- ника напряжение больше 0,2 В, принимается "1", если меньше -0,2 В - принимается "0". Если же напряжение находится в диапазоне от -0,2 до 0,2 В, результат не определен и работоспособность RS-485 не гарантирована. Следовательно, с помощью осциллог- рафа нужно измерить уровни сигналов "0" и "1" и убедиться, что они удовлетворяют ука- занным условиям. На выходе пульта напряжение сигнала "1" обычно равно около +4 В, напряжение "0" - около -4 В. На выходе "С2000-ПИ" при передаче "0" напряжение будет также около -4 В, а при передаче "1" - около + 0,4 В при одном включенном оконечном резисторе 620 Ом и около 0,22 В - при двух оконечных резисторах. По при переходе из "0" в "1" "С2000-ПИ" формирует короткий (около 0,03 мс) импульс с величиной напряже- ния около +4 В. Если сигнал имеет размах от 0 В до -4 В или от +4 В (или +0,2 В для "С2000-ПИ") до 0 В, можно сделать вывод о замыкании одной из линий RS-485 на цепь "0 В".

Рассмотрим как управлять преобразователем частоты с помощью протокола rs 485. Сделаем управление шпинделем автоматикой. Для этого у нас имеется:

  1. Токарный станок со шпинделем ET65A-800W.
  2. Частотный преобразователь завода Шнайдер Электрик Altivar 71.
  3. Модернизатор интерфейса RS232/RS485.
  4. Mach3 v.3.042.029.

Сначала делаем конфигурацию мача:

    1. Разрешаем работу по ModBus, поставив соответствующую галочку.
    1. В настройках шпинделя в подменю убираем ненужные галочки.

  1. Добавляем строку инициализации в меню general conf.
  2. Для работы нужно в частотном преобразователе два регистра – это управление CMD и установка с регистром. Чтобы было удобнее, выбираем частоту вращения двигателем уставкой.

Делаем конфигурацию поллинга:

Связующие элементы 19200 8-N-1. Сканирование с частотой 10 герц в размерной таблице. Поллинг нужен для того, чтобы в связи произошла самодиагностика, и частота преобразовалась. Если обмен сети прекратился на размер заданного перерыва, то частотник выдает ошибку.

Исправляем VBA скрипты:

M3
SetModOutput(0,&H0006)
SetModOutput(1,0)
DoSpinCW()
SetModOutput(0,&H000F)

M4
SetModOutput(0,&H0006)
SetModOutput(1,0)
DoSpinCCW()
SetModOutput(0,&H000F)

SetModOutput(0,&H0006)
SetModOutput(1,&H0000)
DoSpinStop()

rpm = GetRPM()
SetSpinSpeed(rpm)
SetModOutput(1,rpm)

Исправляем постпроцессор:

@start_tool
if only_xyz eq false
if tool_direction eq CW then
mcode = 4
else ; CCW
mcode = 3
endif

call @gen_nb
; {‘S’spin:integer_def_f, ‘ M’mcode}
{‘M’mcode}
call @gen_nb
{‘S’spin:integer_def_f}
call @gen_nb
{‘M8’}
endif
endp
Работаем по связке SolidWorks/SolidCAM.
Этот метод управления обладает преимуществами и отличается от ШИМ преобразователей:
— если скорость шпинделя равна нулю, то мотор гарантированно отключается;
— управляющая программа имеет возможность обмениваться информацией с частотным преобразователем;
— реальные обороты двигателя интерпретируют с заданием частотника;
— на большом расстоянии связной линии выделена хорошая адаптивность к помехам (до одного километра).

Подробнее про управление частотником по протоколу RS-485.

RS-485 применяет пару витую с экраном с землей и сигналом. Земля с сигналом обязательна, но не применяется для исчисления состояния линии в логике. Коммутатор, управляющий линией баланса (balanced line driver), имеет сигнал входа «Enable» (Разрешен), используемый для управления мониторами выхода этого устройства. Если сигнал «Enable» отключен, то это обозначает, что устройство выключено от линии, и в этом положении устройство всегда называется «tristate» (т.е. третье состояние, вместе к двоичным 1 и 0).

Стандартное значение на RS-485 обуславливает только 32 пары передачи и приема, но изготовители увеличили возможности RS-485 протокола, поэтому, теперь он будет поддерживать от 128 до 255 устройств на единичной линии, при использовании репитеров можно увеличивать RS-485/RS-422 очень намного. Если использовать RS-485 можно, и в с длинным проводом или огромного количества устройств надо, применять терминаторы, встроенные в устройства с RS-485 протоколом, но при коротком проводе, видимое ухудшение связи при применении терминаторов.

Так же номинал на RS-485 обуславливает применение двухжильной витой пары с экраном, такой 2-wire RS-485, но будет применение и витой пары из четырех проводов (4-wire RS-485), тогда будет целый дуплет. В этом случае, нужно, чтобы одна конструкция была создана как ведущая (Master), а другие как ведомые (Slave). Тогда многие ведомые конструкции сообщаются только с ведущей конструкцией, и никогда не отдадут ничего прямо друг другу. В этих случаях как всегда RS-422 драйвер применяется как ведущая конструкция, т.к. RS-422 имеет допуск подключения только как master/slave, а RS-485 конструкции как ведомые, для снижения цены системы. Стандарт на RS-422 с самого начала обуславливает применение четырехжильной витой пары с экраном, но имеет допуск соединения всего от одной конструкции к другой (до 5 драйверов и до 10 ресиверов на драйвер). RS-422 был создан, чтобы заменить RS-232 тогда, когда RS-232 не обеспечивает скоростной режим и дальности передачи.

RS-422 применяет чисто размещенные провода (две пары): для приема одну, для отдачи тоже одну (и по одной на все сигналы контроля и подтверждения (control/handshake)). RS-485 имеет наличие третьего состояния («tristate») и может использовать одну пару проводов, что снижает цену системы и обеспечивает связь на длинные дистанции. В настоящее время доступно много разных устройств для соединения RS-422/RS-485 с RS-232, причем RS-232 часто применяется для совмещения с ЭВМ (но, есть и карты интерфейса RS-422/RS-485 в компьютер), который применяется чтобы управлять системой. Имеют место и разнообразные приборы (хабы, репитеры, переключатели и др.) для обеспечения сложных конфигураций RS-422/RS-485 сетей, так что RS-422/RS-485 скрывают в себе много возможностей.

Как сделать разводку сетей RS-485 правильно?

RS-485 отдает информацию в цифровом виде между объектами. Данные могут передаваться со скоростью 10 Мбит/с. RS-485 применяется для отдачи сигнала на повышенную протяженность. Протяженность и скорость данных для RS-485 зависит от разных факторов.

Кабель.

RS-485 сконструирован как система баланса. Это значит, что есть два провода, использующиеся для передачи данных.

Рис. 1. Система баланса пользуется двумя жилами на передачу сигнала.

Эта система является балансной, так как сигнал на двух проводах с обоих концов является точно противоположным. См. Рис. 2.

Рис. 2. Данные отличающиеся с двух сторон проводов.

RS-485 должен использоваться с проводкой «витая пара».

Почему пользуются проводкой «витая пара»?

Это простая пара проводов, имеющих одинаковую длину. Они вместе свиты. Передатчик с кабелем из витой пары снижает две проблемы для создателей скоростных сетей, производимых электромагнитные и индуцируемые помехи.

Электромагнитные излучаемые помехи.

На рисунке показано, что при использовании импульсов с большими фронтами, в сигнале есть составляющие высокой частоты. Такие фронты необходимы для повышенных скоростей, чем может дать RS-485.

Рис. 3. Прямоугольные импульсы.

Компоненты высокой частоты этих фронтов с большими проводами приводят к излучению помех электромагнитных. Система баланса использует линии связи витой парой, снижает эффект, излучатель становится ненужным. Данные на проводах одинаковы, инверсные, сигналы окажутся тоже равными и инверсными. Это делает эффект снижения одного сигнала из-за другого. Это значит, что отсутствует электромагнитное излучение. Но это только предположение. Совмещение проводов дает нейтрализацию облучения из-за протяженности между жилами.

Электромагнитные индуцируемые помехи.

Это та же проблема, только наоборот. Соединения в системе на основе RS-485 работают как антенна. Эти сигналы искажают нужные сигналы, которые приводят к проблемам в данных. Она также может уменьшить зависимость помех. Шум одного провода тот же, что и на втором проводе. Его называют синфазным. Они подавляют шум обоих проводов.

Сопротивление витой пары в виде волн.

Переплетенная пара имеет свойства волн, которые определены производителем. RS-485 обуславливает, чтобы размер резистора был равен 120 Ом. Такая рекомендация импеданса нужна для подсчета худшей нагрузки в интервале синфазных напряжений в RS-485. Спецификация не дает такой импеданс для гибкости. Если нельзя использовать кабель сопротивлением 120 Ом, то нужно, чтобы худший вариант нагрузки и худший диапазон напряжений снова были просчитаны, чтобы убедиться, что система работает. Передатчик может управлять только одной витой парой, другое не предусмотрено спецификацией.

Согласующие резисторы.

Резистор согласующий– это обыкновенный резистор на одном конце кабеля. Размер резистора согласующего равен сопротивлению волновому кабеля.

Рис. 4. Резисторы согласующие имеют одинаковое сопротивление с витой парой.

Если значение двух резисторов отличается от волнового кабеля, то будет отражение, сигнал будет вворачиваться обратно. Расхождения вызывают отражение, чтобы сделать ошибки в данных.


Рис. 5. Сигнал получен с MAX3485. Сигнал справа получен при согласовании с резистором.

Нужно согласовать большую приближенность размера резистора согласующего и волнами. Не важно куда устанавливать согласующий резистор, на обоих концах кабеля.

По правилу резисторы согласования помещаются на концах кабеля, хотя лучше согласование обоих концов сделать критичным для многих дизайнов системы. В одном случае надо только один резистор. Этот случай есть в системе, где есть передатчик. Он находится на другом конце кабеля. Не нужно помещать резистор на конце кабеля вместе с передатчиком, так как сигнал идет от него.

Наибольшее число приемников и передатчиков в сети.

Обычная сеть на RS-485 состоит из приемника и передатчика. RS-485 дает гибкость, разрешает больше передатчиков и приемников на паре. Максимальное число зависит от загрузки системы.

В идеале передатчики и приемники будут иметь большой импеданс и не загрузят систему. Реально так не может быть. Подключенный приемник повышает нагрузку. В помощь разработчику сети RS-485 узнать какое количество устройств будут добавлены в сеть, создали единицу нагрузки. Такие конструкции характеризуются множителями или нагрузкой.

Приемник и передатчик по одному.

Резистор согласованный на проводе в стороне передатчика. Можно передвигать передатчик в ближние края провода, а прибавить передатчики в сеть.

Рис. 6. RS-485 имеет по одному приемнику и передатчику.

Несколько приемников и один передатчик.

Здесь очень важно, чтобы протяженность от витой пары была наименьшая.

Рис. 7. Сеть с несколькими приемниками и одним передатчиком.

Неправильные сети. Несогласованная сеть.

Сравним формулировку данных от неправильной сети разработанной системы. Она была измерена в точках А и В. Здесь на краях пары резисторов для согласования. Сигнал идет от источника, сталкивается с цепью на кабеле. Это ведет к разрушению импедансов, отражению. В открытой цепи энергия идет назад, вызывает искажение сигнала.


Рис. 8. Сеть несогласована. Форма сигнала отличается от правильной.

Расположение терминатора неправильное.

Резистор согласованный есть, но размещен отлично от другого конца кабеля. Сигнал сталкивается с импедансом и его рассогласованием, соединяется на резисторе. Сопротивление было согласовано с кабельным сопротивлением. Дополнительный кабель дает рассогласование и отражает экран. Другое рассогласование – это другой конец кабеля.

Рис. 9. Сеть с резистором, который размещен неправильно, его сигнал.

Кабели составные.

Проблема состоит в драйверах, которые разработаны чтобы управлять одной витой парой. Не любой передатчик может управлять 4-мя витыми параллельными парами. Уровни логические минимальные не гарантируются. Вместе с большой нагрузкой есть различие импедансов в месте, где соединены кабели. Различие импедансов значит отражение и искажение сигнала.

Рис. 10. Некорректная сеть с несколькими парами.

Удлиненные ответвители.

Кабель согласован, нагружен передатчик на витую пару одну. Проводной сегмент в точке подключения приемника слишком длинный. Большие ответвители оказывают большое рассогласование импеданса и отражают сигнал. Ответвители делают наименьшей длины.


Рис. 11. Сеть с трехметровым ответвителем и сигнал в итоге в сравнении с сигналом с маленьким ответвителем.

Какие действия нужны, чтобы разобраться с управлением по протоколу rs485?

  1. Поиск документации на конструкцию. Она приложена в печатном виде к частотнику и актуальна для него. Документы могут быть приложены в электронном виде на диске. Можно найти документацию в Интернете.
  2. Выясняем номера ревизии, версии. Наша цель – версия программы.
  3. Изучение документов по специфическим словам.
  4. Поиск подключающей схемы связующего кабеля и цоколевку разъема.
  5. Поиск описания регистров Modbus. Это карта памяти. Регистры называются переменными.
  6. Определение типа адресации переменных. В Modbus есть два типа различных адресации, логическая и физическая.
  7. Указание поиска в направлении. Это ответственный шаг.

RS-485 представляет собой стандарт, который был впервые принят в Ассоциации электронной промышленности. На сегодняшний момент данный стандарт рассматривает электрические характеристики всевозможных приемников и передатчиков, использующихся в различных балансных цифровых системах.

Что он собой представляет?

Среди специалистов RS-485 представляет собой название достаточно популярного интерфейса, который активно используется в различных промышленных АСУТП для соединения нескольких контроллеров, а также множества других устройств между собой. Главным отличием данного интерфейса от не менее распространенного RS-232 является то, что он предусматривает объединение одновременно нескольких видов оборудования.

При помощи RS-485 обеспечивается скоростной обмен информацией между несколькими устройствами через единственную двухпроводную линию связи в полудуплексном режиме. Его достаточно широко используют в современной промышленности в процессе формирования АСУТП.

Дальность и скорость

При помощи данного стандарта достигается транслирование информации на скорости до 10 Мбит/с, при этом предельно возможная дальность будет непосредственно зависеть от того, с какой скоростью транслируются данные. Таким образом, для обеспечения предельной скорости данные могут передаваться не далее чем на 120 метров, в то время как при скорости 100 кбит/с информация транслируется более чем на 1200 метров.

Количество объединяемых устройств

Количество устройств, которые может объединять в себе интерфейс RS-485, будет непосредственно зависеть от того, какие в устройстве используются приемопередатчики. Каждый передатчик рассчитан на одновременное управление 32 стандартными приемниками, однако при этом нужно понимать, что есть приемники, входное сопротивление которых составляет 50 %, 25 % или даже еще меньшую часть от стандартного, и в случае использования такого оборудования общее количество устройств будет увеличиваться соответственно.

Разъемы и протоколы

Кабель RS-485 не нормирует какой-то определенный формат информационных кадров или же протокол обмена. В преимущественном большинстве случаев для применяются точно такие же фреймы, которые использует RS-232, то есть биты данных, стоповый и стартовый биты, а также бит паритета в случае необходимости.

Работа протоколов обмена в большинстве современных систем осуществляется по принципу «ведущий-ведомый», то есть какое-то устройство в сети является ведущим и берет на себя инициативу обмена посылкой запросов между всеми подчиненными устройствами, различающимися между собой по логическим адресам. Наиболее популярным протоколом на сегодняшний день является Modbus RTU.

Стоит отметить, что кабель RS-485 не имеет также какого-то определенного типа соединителей или же распайки, то есть могут встречаться клеммные соединители, DB9 и другие.

Подключение

Чаще всего с применением данного интерфейса встречается локальная сеть, объединяющая в себе одновременно несколько приемопередатчиков.

Осуществляя подключение RS-485, нужно грамотно объединять между собой сигнальные цепи, называемые обычно А и В. В данном случае переполюсовка является не такой страшной, просто подключенные устройства не будут работать.

Используя интерфейс RS-485, вам следует учитывать несколько особенностей его работы:

  • Наиболее оптимальная среда для передачи сигнала - это кабель на основе витой пары.
  • Концы кабеля в обязательном порядке нужно заглушить при помощи специализированных терминальных резисторов.
  • Сеть, в которой используется стандартный или USB RS-485, должна пролагаться без каких-либо ответвлений по
  • Устройства должны быть подключены к минимально возможной длины.

Согласование

При помощи терминальных резисторов стандартный или USB RS-485 обеспечивает полноценное согласование открытого конца кабеля с последующей линией, полностью исключая возможность отражения сигнала.

Номинальное сопротивление резисторов является соответствующим волновому сопротивлению кабеля и для тех кабелей, которые основываются на витой паре, в преимущественном большинстве случаев составляет приблизительно 100-120 Ом. К примеру, достаточно популярный на сегодняшний день кабель UTP-5, активно использующийся в процессе прокладки Ethernet, имеет волновое сопротивление 100 Ом. Для других вариантов кабеля может использоваться и какой-нибудь другой номинал.

Резисторы в случае необходимости могут запаиваться на контактах кабельных разъемов уже в конечных устройствах. Редко резисторы устанавливаются в самом устройстве, вследствие чего для подключения резистора приходится устанавливать перемычки. В данном случае, если осуществляется отключение устройства, линия полностью рассогласовывается. И для того чтобы обеспечить нормальную работу всей остальной системы, нужно подключить согласующую заглушку.

Уровни сигналов

Порт RS-485 использует балансную схему транслирования данных, то есть уровни напряжения на сигнальных цепях А и В будут изменяться в противофазе.

При помощи датчика должен обеспечиваться уровень сигнала 1.5 В при предельной нагрузке, а также не более 6 В в том случае, если устройство работает на холостом ходу. Уровень напряжения измеряется дифференциально, каждый сигнальный провод относительно другого.

Там, где находится приемник, минимальный уровень принимаемого сигнала в любом случае должен находиться на уровне не меньше 200 мВ.

Смещение

В том случае, если отсутствует сигнал на сигнальных цепях, происходит незначительное смещение, которым обеспечивается защита приемника от случаев ложного срабатывания.

Специалисты рекомендуют осуществлять смещение немного больше 200 мВ, так как данное значение является соответствующим зоне недостоверности входного сигнала по стандарту. В данном случае цепь А подтягивается к положительному полюсу источника, в то время как цепь В подтягивается к общему.

Пример

В соответствии с необходимым смещением и напряжением источника питания осуществляется расчет К примеру, если нужно получить смещение на уровне 250 мВ при использовании терминальных резисторов R T = 120 Ом при том, что источник имеет напряжение 12 В. Учитывая, что в данном случае два резистора включены параллельно друг другу и при этом абсолютно не берут во внимание нагрузку со стороны приемника, ток смещения составляет 0.0042 А, в то время как общее сопротивление цепи смещения составляет 2857 Ом. R см в данном случае будет составлять приблизительно 1400 Ом, поэтому нужно выбрать какой-нибудь ближайший номинал.

В качестве примера будет использоваться резистор 1.5 кОм, предназначенный для смещения, а также внешний резистор на 12 вольт. Помимо этого, в нашей системе присутствует развязанный выход блока питания контроллера, представляющий собой ведущее звено в своем сегменте цепи.

Конечно, есть масса других вариантов реализации смещения, в которых используется преобразователь RS-485 и другие элементы, но в любом случае, осуществляя размещение цепей смещения, нужно учитывать то, что узел, который будет его обеспечивать, периодически будет выключаться или даже в конечном итоге может быть полностью удален из сети.

Если присутствует смещение, то в таком случае потенциал цепи А на полностью холостом ходу является положительным по отношению к цепи В, что является ориентиром, если будет подключаться новое устройство к кабелю без маркировки проводов.

Неправильная разводка и искажения

Выполнение указанных выше рекомендаций позволяет добиться нормальной передачи электрических сигналов в различные точки сети, если в качестве основы используется протокол RS-485. Если будет не соблюдено хотя бы какое-то из требований, будут возникать искажения сигнала. Наиболее заметные искажения начинают появляться в том случае, если скорость обмена данными превышает 1 Мбит/с, однако на самом деле даже в случае меньших скоростей крайне не рекомендуется пренебрегать указанными рекомендациями, даже если сеть «и так нормально работает».

Как программировать?

В процессе программирования различных приложений, работающих с устройствами, использующими разветвитель RS-485 и другие устройства с данным интерфейсом, нужно учитывать несколько важных моментов. Перечислим их:

  • Перед тем как будет начинаться выдача посылки, нужно в обязательном порядке активировать передатчик. Несмотря на то что по информации определенных источников выдача может осуществляться сразу же после включения, некоторые эксперты рекомендуют первоначально выдержать паузу, которая по времени будет равна скорости передачи одного фрейма. В данном случае корректная программа приема успеет полностью определить ошибки переходного процесса, проведет процедуру нормализации и подготовится к последующему приему данных.
  • После того как будет выдан последний байт данных, также рекомендуется выдержать паузу перед тем, как отключать RS-485 устройство. В частности, это связано с тем, что в контроллере последовательного порта зачастую присутствует одновременно два регистра, первый из которых является параллельным входным и предназначается для приема данных, в то время как второй является сдвиговым выходным и используется для последовательного вывода. Любые прерывания по передаче контроллером формируются в случае опустошения входного регистра, когда информация уже была предоставлена в сдвиговый регистр, но еще не была выдана. Именно по этой причине после того, как будет прервана трансляция, нужно выдержать определенную паузу перед отключением передатчика, которая должна быть по времени приблизительно больше на 0.5 бита, чем фрейм. Для осуществления более точных расчетов рекомендуется детально изучить техническую документацию используемого контроллера последовательного порта.
  • Так как передатчик, приемник и, возможно, конвертер RS-485 подключены к единственной линии, собственный приемник будет воспринимать также передачу, осуществляемую собственным передатчиком. Нередко случается так, когда в системах, характеризующихся произвольным доступом к линии, данная особенность используется в процессе проверки отсутствия столкновения между двумя передатчиками. В стандартных системах, работающих в соответствии с принципом «ведущий-ведомый», в процессе передачи рекомендуется полностью закрывать прерывания от приемника.

Конфигурация формата «шина»

Данный интерфейс предусматривает возможность объединения устройств по формату «шина», когда все устройства объединяются при помощи единственной пары проводов. В данном случае линия связи в обязательном порядке должна согласовываться оконечными резисторами двух концов.

Для обеспечения согласования в данном случае устанавливаются резисторы, характеризующиеся сопротивлением 620 Ом. Они устанавливаются всегда на первом и последнем устройстве, подключенном к линии. В преимущественном большинстве современных устройств присутствует также встроенное согласующее сопротивление, которое в случае необходимости можно включить в линию посредством установки специальной перемычки на плату прибора.

Так как в состоянии поставки перемычки изначально установлены, нужно первоначально снять их со всех устройств, соответственно, кроме первого и последнего, подключенных к линии. В преобразователях-повторителях модели С2000-ПИ для каждого отдельного выхода согласующее сопротивление включается с помощью переключателя, в то время как устройства С2000-КС, а также С2000-К характеризуются встроенным согласующим сопротивлением, вследствие чего перемычка, необходимая для его подключения, отсутствует.

Для того чтобы обеспечить более длинную линию связи, рекомендуется использовать специализированные повторители-ретрансляторы, оснащенные полностью автоматическим переключением направления передачи.

Конфигурация формата «звезда»

Любые ответвления в линии RS-485 являются нежелательными, потому что в данном случае появляется достаточно сильное искажение сигнала, однако с практической точки зрения их можно допустить в том случае, если присутствует небольшая длина ответвления. В данном случае не требуется установка согласующих резисторов на отдельных ответвлениях.

В распределительной системе RS-485, управление которой осуществляется с пульта, если последний и устройства подключены к одной линии, но питаются от разных источников, нужно будет объединять цепи 0 В всех устройств и пульта для того, чтобы обеспечить выравнивание их потенциалов. Если данное требование не будет соблюдено, то в таком случае пульт может иметь неустойчивую связь с устройствами. Если будет использоваться кабель с несколькими витыми парами проводов, то в таком случае для цепи выравнивания потенциалов при необходимости может использоваться полностью свободная пара. Помимо всего прочего, предусматривается также возможность применения экранированной витой пары в том случае, если отсутствует заземление экрана.

Что нужно учитывать?

В преимущественном большинстве ток, который проходит по проводу выравнивания потенциалов, является достаточно маленьким, однако в том случае, если 0 В устройств или же самих источников питания будут подключаться к нескольким локальным шинам заземления, разность потенциалов между различными цепями 0 В может составлять несколько единиц, а в некоторых случаях даже десятков вольт, в то время как ток, протекающий по цепи выравнивания потенциалов, может являться довольно значительным. Именно это является частой причиной того, что присутствует неустойчивая связь между пультом и устройствами, вследствие чего они даже могут выходить из строя.

Именно по этой причине нужно исключить возможность заземления цепи 0 В или же, как максимум, заземлять данную цепь в какой-то определенной точке. Также нужно учитывать возможность взаимосвязи между 0 В и цепью защитного заземления, присутствующей в том оборудовании, которое используется в системе ОПС.

На объектах, для которых характерна достаточно тяжелая электромагнитная обстановка, предусматривается возможность подключения данной сети через кабель "экранированная витая пара". В данном случае может присутствовать меньшая предельная дальность, так как емкость кабеля является более высокой.