Мог ли Александр Грэхем Белл в своих самых дерзких мечтах предположить, что его уникальное запатентованное в середине 19 века изобретение, которое впервые дало возможность непосредственных переговоров между абонентами, откроет новую эпоху в развитии человеческой цивилизации — тотальную телефонию? Думали ли жители Берлина, спустя лишь год испытывая первую в Европе соединившую почтамт с телеграфом телефонную линию, что наступит день, когда с помощью телефонных аппаратов можно будет не только осуществлять звонки, но и отправлять текстовые сообщения, общаться в социальных сетях и решать всевозможные рабочие вопросы без проводов? Движение научно-технического прогресса неумолимо, поэтому каждый сегодня уже не мыслит своего существования без определенного «минимального набора функций», обеспечить работу которых призваны постоянно развивающиеся сотовые сети мобильной связи.

Так как же менялись стандарты сотовой связи?

Как передать информацию на большие расстояния? Подобным вопросом человечество задавалось с самых древних времен. Первыми потугами на данном поприще были крик и свист, а дальше — система костров, сообщающая, например, о вражеском наступлении. До 19 века каких-то хоть мало-мальски значимых научных свершений, которые могли бы дать достойный ответ проблеме, не было. Несмотря на многочисленные споры, официальным создателем телефонной связи во второй половине столетия считается Александр Грэхем Белл, силами которого было организована небольшая проводная телефонная сеть длиною в несколько сотен метров. Тем не менее, коммерческое использование его наработок началось только в начале 20 века, а через пять десятков лет мир увидел и первые беспроводные аналоги.


Несмотря на небольшой спрос, отвратительное качество соединения, которое не могло конкурировать с «проводами», и дороговизну для потребителя, первое поколение сотовых сетей мобильной связи можно считать массовым. Получивший распространение к концу 20 века аналоговый стандарт предполагал передачу исключительно речи, ведь его фактическая скорость не превышала 1,9 Кбит/с. В Штатах он был представлен технологией AMPS, а на европейской арене «сражались» NMT и TACS. Уже тогда каждый регион выбирал удобные для себя частоты связи, поэтому телефонные аппараты для каждого из них изготавливались в индивидуальном порядке.


Только с появлением второго поколения сотовых сетей в 90-х годах мобильную связь можно было ставить на одну «полку» с традиционными тогда кабельными решениями. Ее ключевым конкурентным преимуществом перед предшественником стал цифровой способ передачи информации на скорости 9,6 — 14,4 Кбит/с, который не только гарантировал качество голосовых вызовов, но и позволял использовать услугу обмена короткими текстовыми сообщениями — SMS. Она сразу стала невероятно популярной и остается, несмотря на современное засилье мессенджеров, таковой и сегодня. Стандарты-современники — TDMA, CDMA, GSM и PDC.


На пороге миллениума существующие мобильные сети обзавелись поддержкой передачи данных на скорости 171,2 Кбит/с, а операторы — возможностью тарифицировать не время использования услуг, а количество потребленной информации. Переходной этап развития сотовой связи качественно отличался от базового возможностью доступа к интернету с помегабайтной оплатой. Полноценным серфинг сети с ее помощью, однако, назвать нельзя, ведь ее стандартами была предусмотрена уж больно медленная и неуверенная передача пакетных данных. На территории многих стран постсоветского пространства сотовые операторы так и не шагнули дальше данного этапа в развитии мобильной связи, поэтому их жители, по большому счету, не могут полноценно использовать интернет вне Wi-Fi сетей со своих смартфонов. 2,5G базируется на стандартах GPRS, EDGE и 1X.


Мобильные сети третьего поколения, наконец-то, дали пользователям современных мобильных телефонов возможность полноценного доступа к интернету. Их дециметровый частотный диапазон обеспечивает скорость передачи данных до 3,6 Мбит/с, что позволяет без проблем загружать файлы больших объемов, смотреть потоковое видео, прослушивать музыкальные записи и так далее. Тем не менее, принципиальным отличием сетей третьего поколения от предшественников является даже не скорость, а возможность одновременной передачи пакетных данных и канального подключения, что позволяет доступу в интернет не обрывать голосовые услуги и наоборот. Протоколами третьего поколения являются UMTS и CDMA2000.


Очевидные преимущества сетей третьего поколения не заставили операторов мобильной связи обновлять все свое оборудование для предоставления своим пользователям соответствующих услуг. В массы качественный мобильный интернет пошел с появлением 3,5G, который давал возможность «общения» уже на 14,4 Мбит/с, несколько лет назад. Данный промежуточный этап стал самой быстрораспространяемой по мобильному миру технологией — в большинстве стран сегодня именно он является актуальным. Обозначенное поколение сотовых сетей базируется на стандарте HSPA.


Очередным огромным качественным скачком в развитии сотовых сетей последних лет стало четвертое поколение мобильной связи, которое может без проблем конкурировать с оптоволокном, ведь скорость передачи данных в зоне его покрытия достигает 100 Мбит/с. Кроме невероятно быстрой передачи данных никаких интересных особенностей оно, по большому счету, не имеет, однако именно данный показатель сегодня больше всего востребован на рынке. Технология является наиболее актуальной, однако сотовые операторы вводят ее неохотно и только в больших городах. Всему виной небольшая доля владельцев поддерживающих ее устройств в общей массе пользователей. Четвертое поколение мобильных сетей базируется на стандартах WiMAX, LTE и LTE+Advanced.


Прогресс, что неудивительно, не стоит на месте, поэтому несколько передовых в техническом плане стран, среди которых США и Япония, занимаются активной разработкой сотовых сетей нового поколения. Первые пробные запуски должны начаться уже в ближайшие пару-тройку лет, а коммерческий — в 20-х годах. Очевидным нововведением новых стандартов должен стать очередной прирост скорости передачи данных, однако другие интересные особенности и возможности на данный момент держаться под секретом.

Мобильное направление современной пользовательской электроники сегодня является наиболее актуальным, поэтому стремительное развитие сотовых сетей в прошлом, настоящем и будущем закономерно.

15.09.2011

История становления и развития мобильной связи в России и мире

Когда я начал обдумывать идею статьи о прошлом сотовой связи, первым делом вспомнилась история, произошедшая 3 апреля 1973 года. Именно в этот день Мартин Купер, глава подразделения мобильной связи американской компании Motorola, совершил первый в мире звонок по мобильному телефону. И именно эта дата считается днем рождения мобильной связи в том виде, в каком мы все к ней привыкли. Но все началось гораздо раньше.

Когда говорят об истории сотовой связи, прежде всего вспоминается 3 апреля 1973 г. Именно в этот день Мартин Купер, глава подразделения мобильной связи американской компании Motorola, совершил первый в мире звонок по мобильному телефону. И теперь он считается днем рождения мобильной связи в том виде, к какому мы привыкли. Но ее история началась гораздо раньше.

Начало пути

Наверное, первой и самой важной датой в истории мобильной связи следует считать 7 мая 1895 г., когда известный русский ученый Александр Степанович Попов продемонстрировал прибор, предназначенный для регистрации электромагнитных волн. Что интересно, изначально Попов не планировал создавать какие-либо средства радиосвязи, а разрабатывал «грозоотметчик», прибор для регистрации молний. Но, по сути, прибор Попова стал первым в мире радиоприемником, источником сигнала для которого служили грозовые разряды. Позднее, в сентябре 1895 г., вместо метрологического регистратора Попов подключил к своему "грозоотметчику" телеграфный аппарат Морзе, что еще больше приблизило его к средству для беспроводной передачи информации.

Следующим шагом к мобильной связи стали сеансы беспроводной телеграфной связи, проводимые Гульельмо Маркони. Причем если в 1896 г. информация передавалась на расстояние нескольких километров, то к концу 1901 г. сообщение Маркони было получено по ту сторону Атлантического океана. Свою роль сыграло и то, что Маркони обладал коммерческой жилкой, благодаря чему разработанная им технология стала коммерчески успешной, а компания «Маркони и К°» -- известной на весь мир.

«Грозоотметчик» Попова – прибор, с которого началась
беспроводная радиосвязь

Не менее важен был и переход от использования абстрактных "точек-тире" к передаче живого человеческого голоса. Для исследователей-радиотехников тех лет это была одна из наиболее актуальных задач, в процессе решения которой были проведены сотни исследований и получены десятки патентов. Но наибольшего успеха добился Реджинальд Фессенден, в 1900 г. впервые передавший голос по радиоканалу, а к 1903 г. – получивший вполне приемлемое его качество. Датой «мобилизации» беспроводной радиосвязи стал 1901 г., когда Маркони установил приемо-передающее устройство на паровой автомобиль марки «Тоникрофт».

Так выглядел первый автомобиль,
оснащенный системой подвижной радиосвязи

Следующим ключевым стал 1921 г., когда в американском Детройте была запущена первая в мире диспетчерская система телеграфной подвижной связи, предназначенная для нужд местной полиции. Обмен информацией был односторонним – получив сигнал (азбукой Морзе), полицейские связывались с участком по обычному телефону. Фактически построенная в Детройте система была прототипом уже позабытой многими пейджинговой связи. Двусторонняя подвижная радиосвязь для помощи полиции появилась в 1933 г. в Нью-Йорке. Причем она уже была не телеграфной, а голосовой, хотя и работающей в полудуплексном режиме, т.е. для переключения между приемом и передачей нужно было нажимать кнопку.

Америка и Европа

Частным клиентам мобильная радиосвязь впервые стала доступна 17 июня 1946 г., когда в американском Сент-Луисе (штат Миссури) совместными усилиями AT&T и Bell Telephone Laboratories была запущена сеть стандарта MTS, работавшая на частоте 150 МГц. Принцип действия MTS-сети отличался от современной мобильной связи – для покрытия определенной территории использовался один мощный передатчик, а для регистрации сигнала от абонентских устройств – сеть приемников. Вызов в MTS-сети осуществлялся в ручном режиме – сначала абонент выбирал свободный канал, а затем устанавливал связь с оператором, соединявшим его с нужным абонентом. Причем изначально МТS-сеть работала в полудуплексном режиме, что позволяло решить проблему эха. Полнодуплексный режим (т.е. как в обычном телефоне) и автоматический выбор каналов появились лишь в 1964 г. Кстати, уже к концу 40-х гг. прошлого века AT&T и Bell Telephone Laboratories, не были самым передовыми – в 1948 г. Радиотелефонной компанией Ричмонда (штат Индиана) была запущена полностью автоматическая система подвижной радиосвязи, в которой вызов абонента осуществлялся без помощи оператора.

Один из первых автомобильных радиотелефонов

Все первые системы подвижной радиосвязи тех лет имели серьезное ограничение в виде частотного ресурса с ограниченным числом каналов. Это мешало обеспечить полное покрытие значительной территории и не позволяло двум сетям работать в одном частотном диапазоне – минимальное расстояние между двумя радиосистемами должно было составлять не менее 100 км. Решение данной проблемы было найдено сотрудником Bell Laboratories Д. Рингом, предложившим всю зону покрытия разделить на ячейки (соты), образуемые базовыми станциями, работающими в различающихся частотных диапазонах. И именно сотовый принцип стал основополагающим для современных мобильных сетей. Практическая реализация идеи появилась в 1969 г. в поездах Metroliner, курсировавших между Нью-Йорком и Вашингтоном – весь маршрут поезда (255 миль) был разделен на девять зон, в каждой из которых было доступно по шесть каналов на частоте 450 МГц, а центр управления системой находился в Филадельфии.

Схематичное изображение сотовой сети

Одновременно с США системы подвижной радиосвязи развивались и в Европе, где основные работы вели компании «Эрикссон» и «Маркони». Первые испытания европейских систем радиосвязи состоялись в 1951 г., а японских – в 1967 г. Кстати, именно японцы установили, что в условиях городской застройки для подвижной радиосвязи больше всего подходят диапазоны в районе 400 и 900 МГц. Среди европейских стран первая коммерчески успешная сеть сотовой связи была развернута в Финляндии в 1971 г., а к 1978 г. ей была покрыта вся территория страны. Естественно, речь шла об автомобильной радиосвязи, что даже нашло отражение в ее названии – Autoradiopuhelin (ARP, «Автомобильный радиотелефон»). Аналогично позиционировалась и сеть Autotel. Однако несмотря на аналоговую передачу голоса, в стандарте Autotel вся служебная информация, в отличие от других систем подвижной радиосвязи тех лет, передавалась уже в цифровой форме.

Велись разработки в области подвижной радиосвязи и в нашей стране, но о них будет рассказано немного ниже, а пока вернемся в США, где развернулась яростная борьба между компаниями AT&T Bell Labs и Motorola, стремившимися стать лидерами на зарождающемся рынке мобильной связи. Причем AT&T Bell Labs делала ставку на автомобильную радиосвязь, а Motorola – на компактные устройства, которые можно было носить с собой. Конкуренция была достаточно жесткой, предпринимались даже попытки задействовать административный ресурс в лице FCC (Федеральной комиссии по коммуникациям). Победителем в борьбе вышла Motorola, а главным направлением дальнейшего развития мобильной связи стало создание компактных устройств, которые можно было просто носить с собой. Коммерческая сеть, основанная на предложенных Motorola принципах, была запущена в 1983 г., через десятилетие после того исторического звонка.

Первый мобильный телефон Motorola DynaTAC 8000X
(Dynamic adaptive total area coverage)

Если обсуждать стандарты сотовой связи тех лет, то следует напомнить, что в Америке начинал набирать популярность аналоговый стандарт AMPS (Advanced mobile phones service - усовершенствованная подвижная телефонная служба), впоследствии усовершенствованный до цифрового D-AMPS. В Европе появилась целая россыпь различных несовместимых между собой стандартов, а наибольшее распространение получили скандинавский NMT (Nordic mobile telephony) и развернутый в ряде европейских стран TACS (Total access communications system, аналог AMPS). В Японии наиболее популярными стали NTT (Nippon telephone and telegraph system) и модифицированный вариант TACS, получивший имя JTACS(NTACS). Все перечисленные стандарты, как и AMPS, были аналоговыми, а построенные сети относились к первому поколению мобильной связи.

Одновременно с ростом количества абонентов мобильных сетей перед европейцами встал вопрос создания единого стандарта мобильной связи, для чего в 1982 г. была создана группа Groupe Spécial Mobile, включавшая 26 европейских телефонных компаний. На разработку одноименного стандарта ушло девять лет – его первая спецификация была опубликована в 1991 г., а первая в мире коммерческая GSM-сеть была запущена в 1992 г. в Финляндии. Альтернативой GSM стал стандарт CDMA, распространенный в США и странах Азии. Первая коммерческая CDMA-сеть появилась в 1995 г. в Гонконге, а первая спутниковая система связи коммерческого назначения (основанная на технологии CDMA Omni TRACKC) была запущена в 1980 г. Кстати, теоретические основы CDMA заложил еще в 1935 г. русский ученый Д. В. Агеев.

Наша история

Сотовая связь в современном понимании пришла в нашу страну в 1991 г., когда компания «Дельта Телеком» развернула сеть стандарта NMT-450i, а первый звонок с ее использованием состоялся 9 сентября 1991 г. Первая российская GSM-сеть была запущена в 1994 г., одновременно с появлением оператора «Северо-Западный GSM».

Однако история развития мобильной связи в нашей стране имеет более глубокие корни. Все началось с того, что во время Великой Отечественной войны советский ученый Георгий Ильич Бабат предложил идею устройства под названием «монофон», представлявшего собой переносной телефонный аппарат, работающий полностью в автоматическом режиме. Рабочий диапазон частот устройства должен был находиться в районе 1--2 ГГц, но в отличие от современных средств сотовой связи, в «монофоне» для передачи голоса планировалось использовать не радиоканал, а разветвленную сеть волноводов.

Г.И. Бабат, изобретатель «монофона»

Следующий шаг к отечественной мобильной связи был сделан Г. Шапиро и И. Захарченко, предложившими в 1946 г. систему автомобильной радиотелефонной связи. Ее принцип был прост и гениален – городские телефонные станции предполагалось дополнить радиоприемной аппаратурой, а каждому автомобилю, оснащенному радиосвязью, – выделить индивидуальные позывные. Для совершения вызова достаточно было передать в эфир свои позывные, после чего автоматически включался установленный в автомобиле телефон, пользоваться которым можно было, как обыкновенным телефонным аппаратом. При поступлении на номер мобильного абонента входящего звонка установка связи с ним осуществлялась также посредством позывных. На первых порах даже радиус действия системы Шапиро -- Захарченко составлял примерно 20 км, но впоследствии изобретатели смогли увеличить его до 150 км, причем сам прибор был весьма компактным. Изначально систему Шапиро -- Захарченко предполагалось использовать для координации работы милиции, пожарных, медиков и других экстренных служб. Однако идея не прижилась в первую очередь из-за нежелания этих служб быть привязанными к городской телефонной сети.

Но действительно сенсационным можно считать то, что в 1957 г. Л. И. Куприянович создал прототип мобильного телефона, получившего имя ЛК-1. Что интересно, до разработки ЛК-1 сферой деятельности Куприяновича было создание портативных раций, так же как и у его заокеанского коллеги Мартина Купера. Сопряжение ЛК-1 с городской телефонной сетью осуществлялось через «Автоматическую телефонную радиостанцию» (АТР), с которой «мобильная» трубка была связана четырьмя частотными каналами: прием звука, передача звука, передача сигналов набора номера и отправка сигнала завершения вызова. Причем был продуман и вопрос массового использования ЛК-1 – в этом случае управляющие сигналы различались по тональности, а для передачи голоса использовались разные частотные каналы. Радиус действия аппарата составлял несколько десятков километров.

Заметка в журнале «Наука и жизнь», №10, 1958 г..

Обратите внимание – в СССР изначально ставка делалась именно на создание систем подвижной радиосвязи, использование которых максимально похоже на использование обычных городских телефонов, причем эти системы должны были максимально просто интегрироваться с действующей городской телефонной сетью. Также понималась и важность компактных размеров – если первые варианты ЛК-1 весили около 3 кг (напомню, вес автомобильных радиотелефонов составлял 10--20 кг.), то уже в 1958 г. Куприяновичу удалось изготовить телефон весом всего 500 гр. А в 1959 г. он выдвинул предложение установить АТР на высотном задании, т.е. реализовать то же самое, что сделал Мартин Купер спустя 14 лет. Но изобретение Л.И. Куприяновича хода не получило, и к 1960--1961 гг. в своих статьях он рассказывает о портативных рациях и новостях электроники, но ни словом не упоминает о радиотелефоне.

И это не случайно -- в конце 50-х гг. прошлого века по заказу высшего руководства страны в СССР началась разработка системы подвижной автоматической радиосвязи «Алтай». Причем одно из главных требований состояло в том, чтобы ее использование было максимально схоже с применением обычной телефонной сети, т.е. ручное переключение каналов и необходимость вызова диспетчера были исключены. И эта задача была решена – уже в 1963 г. система была запущена в опытную эксплуатацию на территории Москвы. Рабочий диапазон «Алтая» находился в районе 150 МГц, а позднее был задействован и диапазон 330 МГц. К середине 70-х под покрытием этой системы оказались уже 114 городов СССР, а на Олимпиаде 1980 г. она стала основным средством для связи освещавших ее журналистов. Причем качество связи на «Алтае» было не хуже, чем на лучших проводных телефонных линиях, а проблемы со связью возникали достаточно редко. В эпоху своего расцвета она стала доступна не только партийным и государственным деятелям, но и руководителям предприятий – к началу 80-х гг. ею пользовались около 25 тыс. абонентов. Для высшего руководства страны и нужд спецслужб также была создана «Роса», представлявшая собой вариант «Алтая», дополненный средствами шифрования.

Абонентское оборудование «Алтай» образца 1960-х гг

Были у СССР и планы по развертыванию сети мобильной связи, доступной для рядового человека. В начале 1980-х годов была начата работа над системой «ВоЛеМоТ», название которой состояло из первых букв городов, где велась ее разработка: Воронеж, Ленинград, Молодечно, Тернополь. Причем в систему изначально закладывались возможность использования множества базовых станций с целью покрыть всю территорию страны и поддержка автоматического перехода между базовыми станциями без прерывания разговора. Таким образом, «ВоЛеМоТ» могла стать полноценной сотовой сетью, и если бы не бюрократические проволочки и недостаточное финансирование работ, то ее запустили бы уже к середине 1980-х гг. В качестве рабочего диапазона в ней планировалось использовать частоту 330 МГц, что давало возможность покрыть одной базовой станцией большие расстояния. Кстати, запуск системы в эксплуатацию в некоторых городах все же состоялся, но произошло это лишь в середине 1990-х гг., когда технологическое лидерство было упущено, а на рынке доминировали NMT- и GSM-сети.

Резюме

История не имеет сослагательного наклонения. Мы упустили возможность стать лидерам в деле строительства мобильных сетей, а ведь шансы для этого у нашей страны были. В 1959 г. болгарский ученый Христо Бачваров создал мобильный телефон, концептуально схожий с аппаратом Л.И. Куприяновича, и получил соответствующий патент. Более того, на выставке «Интероргтехника-66» засветились РАТ-0,5 и АТРТ-0,5, компактные мобильные телефоны промышленного производства, а также базовая станция РАТЦ-10, способная одновременно связать шесть мобильных абонентов с городской телефонной сетью. Но в серию все эти наработки так и не пошли, а днем рождения мобильной связи все признали 3 апреля 1973 г., когда Мартин Купер совершил свой исторический звонок.

Мобильная связь играет все более важную роль в жизни людей во всем мире. Мобильные сети вывели возможности связи и темпы развития отрасли на совершенно новый уровень. Всего лишь за 20 лет абонентами мобильной связи стали более 5 млрд. человек.

В январе 2008 г. международное объединение Third Generation Partnership Project (3GPP), разрабатывающее перспективные стандарты мобильной связи, утвердило LTE в качестве следующего после UMTS стандарта широкополосной сети мобильной связи. LTE (Long Term Evolution) — это глобальный стандарт для четвертого поколения мобильных сетей (4G). Стандарт обеспечивает пропускную способность и быстродействие, необходимые для эффективного обслуживания растущего трафика данных. Внедрение LTE является эволюционной, а не революционной вехой, поскольку предоставляет возможность использовать возможности существующей инфраструктуры. Это перспективный подход для гибкой миграции сервисов между мобильными сетями 2G, 3G и 4G. Но, чтобы удовлетворить будущие потребности клиентов в быстродействии и пропускной способности, все крупные провайдеры должны начать внедрение стратегии LTE уже сегодня.

Передача информации в сети LTE осуществляется только с помощью IP-протокола, стандарт обеспечивает поддержку IPv6-адресации, а также «мягкий хэндовер» (переход абонента из зоны покрытия одной базовой станции в зону действия другой без потери связи). Рассмотрим характеристики четвертого поколения связи. Одним из важных элементов стандарта является пропускная способность. Теоретическая пиковая скорость передачи данных LTE составляет до 326,4 Мбит/с от базовой станции к пользователю и до 172,8 Мбит/с в обратном направлении. Для сравнения, сети 2G способны обеспечить максимальную скорость передачи данных с помощью технологии GPRS 114 Кбит/с, а с помощью EDGE — 473,6 Кбит/с. Сети 3G обеспечивают скорость передачи данных до 3,6 Мбит/с. Второй немаловажной особенностью является частотный диапазон, в котором может работать технология. LTE поддерживает гибкие варианты полосы пропускания с несущей частотой от 1,4 МГц до 20 ГГц. Сеть также поддерживает дуплексную передачу с разделением как по частоте (FDD), так и по времени (TDD). Третья характеристика — задержка во время передачи данных. В LTE она меньше, чем в 3G. Это преимущество важно для многопользовательских игр и обмена большими объемами данных. Очень существенную роль также играет диапазон конечных устройств. LTE-модемами планируется оснащать не только мобильные телефоны и планшеты, но и многие компьютерные и бытовые электронные устройства: например, ноутбуки, игровые приставки, видеокамеры и другие портативные устройства.

LTE — это самая быстро развивающаяся технология мобильной связи. С момента разработки этой технологии прошло пять лет, и уже на конец четвертого квартала 2012 г. число абонентов сетей LTE в мире достигло 68.33 млн. По данным GSA (The Global mobile Suppliers Association) на текущий момент в мире запущено в коммерческую эксплуатацию 163 сети в 67 странах. О своих планах развертывания LTE-сети заявил 361 оператор в 114 странах. 54 оператора из 10 стран ведут тестовые испытания сетей в статусе некоммерческой эксплуатации. Всего 415 провайдеров мобильной связи из 124 стран мира инвестируют в LTE. Согласно аналитическому прогнозу GSA, к концу 2013 года в мире будут полноценно работать 248 сетей LTE в 87 странах. Цена на LTE-связь в мире приблизительно такова: в Стокгольме 30 Гб стоит 60 евро, а в Гонконге месячный доступ к сети без ограничения трафика стоит всего 40 долларов США.

4G-связь пришла в Россию уже давно, но при этом там поставили не на ту лошадку. Yota (бренд оператора «Скартел»), и «Комстар» использовали стандарт WiMAX, который не получил в мире широкого распространения. Позже стало ясно, что весь мир предпочитает стандарт LTE — в результате обе компании в 2012-м решили заменить WiMAX на LTE. Были выбраны частоты в диапазоне 2600 МГц. И как результат российские частоты не совпадают ни с США, ни с крупными европейскими странами. Соответственно, когда iPad и iPhone 5 добавили LTE, российским пользователям таких сетей это никак не помогло.

Осенью 2012 года Российская служба по надзору в сфере информационных технологий, связи, и массовых коммуникаций объявила результаты конкурса на возможность использования частот связи четвертого поколения в полосе радиочастот 700 МГц, 800 МГц и 2,6 ГГц. Было подано восемь заявок, из которых было выбрано четырех претендентов: МТС, «Ростелеком», «ВымпелКом» и «МегаФон». Каждый из этих операторов получил 2 полосы радиочастот, шириной 7,5 МГц. Победители обязаны начать развертывание 4G-сети, при этом должны вложить в финансирование не меньше 15 млрд. рублей. К концу 2013 г. «Мегафон», МТС, «Вымпелком» и «Ростелеком» обязаны запустить сети LTE соответственно в восьми, семи, шести и пяти субъектах России. Каждый провайдер обязан развернуть к 2016 г. 4G-сети в 30—35 субъектах на территории РФ, а к 2020 г. все пункты с населением более 50 тыс. человек должны иметь доступ к LTE-сети от всех компаний-победителей.

На текущий же момент компания «Мегафон» с августа 2012 г. начала предоставлять услуги LTE как виртуальный оператор на сети Yota. Взамен абоненты Yota смогут переключаться на сеть 2G/3G «Мегафона». Предположительно к сети «Скартела» могут подключиться еще компании: известно, что переговоры об этом ведут МТС, «Ростелеком» и «Вымпелком». Кроме того «Мегафон» развернул еще и собственную сеть LTE в Москве в диапазоне 2,6 ГГц. Также в Москве запустила свою сеть стандарта LTE в диапазоне 2,6 ГГц компания МТС. Со стороны абонентов наблюдается следующая картина: российская доля в мировых продажах устройств с поддержкой LTE в 2012 г. составила всего 0,6% (согласно информации агентства J’son & Partners Consulting). Но продажи будут расти по мере увеличения покрытия сетей, снижения цен на устройства, расширения их ассортимента и роста популярности LTE в целом. К 2015 г. в России планируется увеличение доли мировых продаж до 2%. По оптимистичному прогнозу, к 2018 г. в России появится 20 млн. абонентов LTE, по консервативному — только 10 млн. Цена на мобильный интернет в сети «МТС» составляет 1400 рублей (45 долларов США) за 25 Гб, а в сети «Мегафон» — 1590 рублей (52 доллара США) за 30 Гб.

В Украине операторы только начали закладывать фундамент для перехода на новую технологию. До сентября 2012 г. украинских CDMA-провайдеров сдерживало в долгосрочном планировании ограничение срока действия лицензии на использование радиочастотного диапазона до 1 января 2016 г. С осени ограничение срока действия лицензий было упразднено, что дало операторам возможность задуматься о переходе на новое поколение связи. Кроме того, после окончательного перехода Украины на цифровое телевещание высвобождается полоса радиочастот 790—862 МГц (ее часто называют цифровым дивидендом). В большинстве стран мира цифровой дивиденд уже выделен под LTE. Например, в России эта полоса частот определена для LTE, а в Европе немецкие операторы Deutsche Telekom и O2 уже эксплуатируют коммерческие сети LTE в диапазоне 800 МГц. Частотный диапазон 800 МГц очень интересен для мобильных операторов, поскольку позволяет обеспечить большой радиус покрытия.

В игру также собираются вступить и крупнейшие операторы GSM-сетей. Хотя они и не собираются пока отказываться от 2G сетей, которыми до сих пор пользуется большинство абонентов, но готовы вступить в борьбу за частотный диапазон. Компания «Астелит» (ТМ life:) получила лицензию на доставшийся ей в наследство от DCC частотный диапазон 800 МГц. «Киевстар» установил коммутатор по технологии MSC Server Blade Cluster, который поддерживает различные стандарты мобильной связи - от 2,5G до LTE. При добавлении программных продуктов в коммутатор, одна часть его плат способна одновременно обслуживать звонки GSM, а вторая — абонентов LTE. Таких узлов пока только шесть: в Киеве, Днепропетровске, Львове, Ровно, Харькове, и Симферополе. Компания «МТС» заявила о готовности строить LTE, однако пока не известно, какие шаги она для этого предпринимает. Теоретически, операторы могут использовать для LTE и частоты 900/1800 МГц. Однако у всех провайдеров этого диапазона есть лишь фрагментированные элементы спектра шириной 5—10 МГц, что не позволят обеспечить должную емкость сетей LTE. Чтобы это изменить, им придется меняться частотами с другими операторами мобильной связи и покупать лицензию на новые частоты.

С ростом объема мобильного трафика, повышения требований к пропускной способности, в долгосрочной перспективе возможен коммерческий запуск LTE и в Украине. Аналитики предполагают, что это произойдет к 2015 году. К тому времени можно будет учесть опыт разворачивания таких сетей в других странах. Да и терминалы станут дешевле и разнообразнее.

Первый этап развития систем сотовой связи в России начался с ввода в промышленную эксплуатацию первой системы сотовой связи в России в 1992 г. Этот этап характеризуется установкой недорогого оборудования стандартов NMT, AMPS. Первой компанией на рынке сотовых операторов России было ОАО "ВымпелКом" (Вымпел-Коммуникации), которое было образовано в 1991 году. В июне 1992 года рабочая группа компании ОАО "ВымпелКом" разрабатывает проект сети сотовой связи. Начинает работу первая в России экспериментальная сеть стандарта AMPS с емкостью 200 абонентов, а 12 июля в сети "ВымпелКома" совершается первый пробный звонок. Время до кризиса 17 августа 1998 года было периодом абонентов - "жирных котов", когда количество пользователей было незначительно, и абоненты были готовы выкладывать тысячи долларов в месяц за пользование телефоном. Недорогое оборудование очень быстро окупилось и приносило сверхприбыли своим владельцам. Операторы сотовой связи ориентировались лишь на обеспеченных клиентов и не были заинтересованы в привлечении массовых клиентов со скромным достатком. В рекламе всячески подчеркивалась социальная престижность сотового телефона. Данный этап развития систем сотовой связи в России соответствует этапу роста на кривой жизненного цикла продукта.

Рынок сотовых операторов России стал для производителей оборудования сотовой связи новым огромным развивающимся рынком. Как известно, рынки оборудования в Западных странах уже были насыщены, сети мобильной связи уже развернуты, продать оборудование можно было только на замену (заменить оборудование морально устаревшего стандарта на оборудование новейшего стандарта). А особенность рынка оборудования сотовой связи заключается в том, что необходимо быстро развернуть дорогостоящую систему, иначе невозможно предоставлять услуги связи в принципе. А для этого необходимы инвестиции. Поэтому, для сотовой связи так важна быстрая окупаемость проектов. Стремясь захватить рынок оборудования мобильной связи, компании-производители оборудования связи развертывали свои коммерческие, сервисные, инженерные инфраструктуры в России и в той или иной форме финансировали операторов сотовой связи. К тому времени уже была образована компания "Мобильные ТелеСистемы" при участии германского капитала Deutsсhe Telecom и Siemens, а именно 28 октября 1993 года.

Из вышесказанного известно, что данный период характеризовался маленьким количеством абонентов. Естественным следствием этого был также высокий уровень постоянных издержек фирм-операторов (МТС и БиЛайн) в расчете на одного абонента. Ведь сеть станций была сильно недогружена. Поэтому объективно конкурентоспособность сотовых операторов была невысока и, следовательно, существовала возможность успешного вторжения новых конкурентов.

Что и случилось уже в 1995-1997 гг. в Санкт-Петербурге, где на рынок вышел новый игрок - фирма "Северо-Западный GSM", сразу предложившая умеренную абонентскую плату - 15 долл. в месяц. При новом подходе высокие первоначальные издержки должны были окупиться не за счет высоких цен, а благодаря массовости клиентской базы. Действительно, в результате снижения цен начался резкий рост петербургского рынка. Так, если на конец 1996 г. его емкость составляла 63 тыс. абонентов, то через год она достигла 131 тыс. По числу мобильных телефонов на 1000 жителей именно С.-Петербург (а не Москва, с ее гораздо более зажиточным населением!) стал в это время национальным лидером.

Вслед за наиболее привлекательными московским и петербургским рынками началось интенсивное освоение регионов России. Рядом западных компаний было основано производство оборудования связи на со-местных предприятиях в России.

Сложно представить жизнь в 21 веке без сотовой связи. Мы каждый день совершаем десятки звонков, используя свои мобильные телефоны и связываемся с различными людьми, находящимися в самых отдаленных уголках планеты. А ведь за каждым таким звонком стоят годы исследований и научных открытий, позволивших сделать жизнь в будущем гораздо проще.

Как все начиналось

В истории развития сотовой связи существует множество важных событий, без которых сам факт совершения телефонного звонка сейчас мог бы казаться фантастикой. И самое первое из этих событий связано с известным русским ученым Александром Степановичем Поповым. Именно наш соотечественник 7 мая 1895 года показал общественности прибор, по сути являющийся практичным радиоприемником. Названный гениальным физиком как «грозоотметчик», прибор позволял обнаруживать и регистрировать электромагнитные колебания в радиусе нескольких десятков километров. Более чем через год, Попов заменил метрологический регистратор телеграфным аппаратом Морзе и мир увидел первое и единственное пока устройство для беспроводной телеграфии. Параллельно с Поповым, над вопросом беспроводной передачи информации в то же время бились Маркони, которого западные страны и признают создателем радио, и другие известные ученые.

Интересный факт: первая радиограмма, с использованием прибора Попова была переслана еще 24 марта 1896 года. Расстояние передачи тогда составило всего 250 метров, а текст сообщения представлял всего два слова: «Heinrich Herz» («Генрих Герц»). Таким образом, Попов отдал дань Герцу, который в 1888 году доказал сам факт существования электромагнитных волн.

Следующим важным этапом в развитии сотовой связи стал 1901 год, когда Маркони, запатентовавший улучшенную версию прибора Попова, организовал первую в истории радиосвязь через Атлантический океан. В том же году радио было установлено Маркони на паровом автомобиле «Торникрофт», что дало верное направление движения развития мобильной связи.

Интересный факт: впервые через океан Маркони передал лишь одну единственную букву S азбуки Морзе. Подтверждения сторонними источниками этого факта не было.

Двадцать лет спустя, в 1921 году, полиция Детройта впервые начала применять телеграфную подвижную связь. Работающая лишь в одну сторону и использующая частоту 2 МГц, связь позволяла диспетчерам координировать полицейских или вызывать их на телефонный разговор. Доработана технология была уже через 12 лет, когда в полицейском департаменте Нью-Йорка первыми начали использовать двухстороннюю радиосвязь, работающую по принципу Push-To-Talk.

Интересный факт: принцип работы Push-To-Talk дошел и до нашего времени. Он применяется в большинстве голосовых мессенджеров вроде Skype, Mumble, Teamspeak и т.д.

Начало эпохи сотовой связи

Вторая мировая война замедлила развитие радиотелефонии и тем более, частной мобильной связи. Но практически сразу после ее окончания, 17 июня 1946 года, компании AT&T и Bell Telephone Laboratories запустили первую в истории сеть подвижной радиосвязи, пользоваться которой могли частные клиенты. Конечно, все работало не идеально, да и аппаратура, необходимая для связи с прочими абонентами сети была громоздкой. Подумать только, радиотелефон в ту пору весил около 30-40 кг и это без учета источника питания. Устанавливались такие телефоны в помещениях, а чаще всего в автомобилях, где не нужно было заботиться о наличии отдельного источника питания, поскольку аппаратура питалась прямо от бортовой сети машины.

Одной из важнейших дат в развитии сотовой связи считается 1947 год, в котором Дуглас Ринг выдвинул идею сотового принципа организации сетей подвижной связи, по сути предложив миру и своей компании Bell Laboratories создать мобильный телефон. Мало кто мог тогда подумать, что до появления первого прототипа портативного сотового телефона еще 25 лет.

Ответственной за создание первого сотового телефона стала компания Motorola, имеющая в своем штате поистине гениального изобретателя Мартина Купера. Именно он совершил звонок с устройства под названием Motorola DynaTac, который и считается первым звонком по мобильному телефону. Устройство действительно можно было назвать мобильным - DynaTac весил «всего» 1,15 кг и имел «скромные» габариты 22,5×12,5×3,75 см.

Интересный факт: Motorola DynaTac имел 12 функциональных клавиш и аккумулятор, позволяющий работать устройству до 8 часов в режиме ожидания. Заряжать же DynaTac приходилось в течение неполных 11 часов.

После этого триумфального для Motorola момента, настала пора развертывания в различных странах сотовых сетей. К 1983 году сотовые сети были развернуты в США, Японии, Дании, Швеции, Норвегии, Финляндии, Саудовской Аравии и некоторых других странах. И хоть запущенные сети были готовы к эксплуатации, была серьезная проблема - на рынке не было представлено устройств, которыми клиенты AT&T, NTT, Ericsson и других сотовых компаний, могли бы пользоваться.

Годом позже Motorola выпустила новую версию своего мобильного телефона DynaTAC 8000X. Устройство по-настоящему поразило потребителей, ведь гаджет позволял оставаться на связи практически в любой точке крупного города, при этом неудобства в его использовании тогда практически не были заметны. За DynaTAC 8000X выстроились огромные очереди, несмотря на внушительную цену телефона в размере $3995.

Интересный факт: DynaTAC 8000X нашел отражение в нескольких фильмах и компьютерных играх. Так, в культовом сериале «Во все тяжкие» Гектор Саламанка разговаривает, используя DynaTAC 8000X.

Практически одновременно с запуском Motorola «доступного» мобильного телефона, крупнейшие мировые страны начали утверждать национальные стандарты связи. Великобритания приняла в качестве национального стандарта систему ETACS, основанную на технологии AMPS (Усовершенствованная Служба Мобильных Телефонов), а в США приняли стандарт цифровой связи IS-54 (D-AMPS). Что касается СССР, то здесь в 1991 году появился первый оператор сотовой связи «Дельта Телеком», работающий по стандарту NMT-450.

Интересный факт: минута разговора для абонентов «Дельта Телеком» первоначально составляла $1. При условии, что телефон Mobira - MD 59 NB2 стоил немалые $4000, воспользоваться мобильной связью позволяли себе лишь наиболее обеспеченные люди.

Очередным переломным моментом в развитии сотовой связи является начало эпохи GSM. Стандарт GSM начали разрабатывать 26 Европейских национальных телефонных компанией еще в 1982 году, после чего Европейский Телекоммуникационный Институт Стандартов (ETSI) в 1989 году взял на себя ответственность за развитие системы. Опубликована же была спецификация в 1991 году, тогда же коммерческие сети GSM начали действовать в крупнейших европейских странах. США в это же время пошла своим путем, приняв стандарты цифровых технологий TDMA и CDMA.

Массовая популяризация и дальнейшее развитие

Начиная с 1991 года развитие сотовой связи закрутилось бешеными темпами. Новые сотовые операторы стали открываться по всему миру, вкладывая серьезные финансовые средства в разработку новых технологий. Благодаря этому в 1999 году был выпущен стандарт пакетной передачи данных GPRS и миллионы владельцев сотовых телефонов получили доступных к мобильному интернету.

Примерно к этому же времени на рынке появилось множество доступных телефонов. Наиболее преуспевали в насыщении рынка компании Siemens, Ericsson, Sony и Nokia. Большинство из этих компаний сейчас переживают не самые лучшие времена, но тогда им просто не было равных.

Интересный факт: Nokia 8110 (расположенный на изображении ниже) остался в памяти у людей еще и по своей «роли» в популярном фильме «Матрица». В будущем Nokia запустила еще две версии Nokia 8110 с названиями Nokia 8110i и Nokia 8148.

В 2000 году было запущено третье поколение мобильной связи 3G, повсеместно использующееся и сейчас. 3G-связь строится на основе пакетной передачи данных со скоростью до 3,6 Мбит/с. Такая скорость позволяет прямо с мобильных телефонов или планшетов просматривать фильмы, слушать музыку и наслаждаться полноценным доступом к глобальной сети.

Переходным этапом к четвертому поколению мобильной связи, более известным как 4G, стал протокол HSDPA, который начали внедрять в 2006 году. Данный протокол существенно увеличил скорость передачи данных в мобильных сетях, предел которой стал равняться 42 Мбит/с.

Первая в мире коммерческая сеть четвертого поколения стандарта LTE была запущена в 2009 году в Стокгольме и Осло. Работая в 4G-сетях, подвижные абоненты могут осуществлять передачу данных со скоростью свыше 100 Мбит/с, а стационарные абоненты со скоростью 1 Гбит/с. В настоящее время 4G-сети начинают охватывать все большие территории, добираясь до наиболее отдаленных участков земного шара. Внедрение стандарта 5G ожидается не ранее 2020 года.