АПЕРТУРНЫЙ СИНТЕЗ, метод получения высокого углового разрешения с помощью синтеза результатов измерений, выполняемых радиоинтерферометром, состоящим из двух малых апертур, перемещающихся в пределах большой апертуры, и корреляционного (перемножающего) приёмника. Результат измерения методом апертурного синтеза аналогичен измерениям с антенной большой апертуры. При апертурном синтезе выполняется большое количество измерений при различных положениях элементов и результаты суммируются с определёнными весами и фазами.

Метод апертурного синтеза предложен в 1952 году М. Райлом, исследовавшим с его помощью радиоструктуру галактик. В 1974 году Райл совместно с Э. Хьюишем были удостоены Нобелевской премии «за новаторские исследования в радиоастрофизике». Наибольшее распространение апертурный синтез получил в радиоастрономии и радиолокации. В радиоастрономии апертурный синтез используется в связи с задачами исследования углового распределения интенсивности излучения радиоисточника с тонкой структурой от угловых минут до долей секунд. Для таких исследований нужны антенны с отношением d/λ (d - линейный размер апертуры, λ - длина волны) порядка 10 3 —10 6 , поэтому для сантиметрового диапазона радиоволн d должно быть порядка сотен метров и более. Естественно, обычные антенны с такой апертурой создать невозможно, поэтому апертуру «синтезируют», проводя измерения в отдельных точках, расположенных внутри этой синтезированной апертуры, и выполняя соответствующую обработку измерений. В результате достигается высокое угловое разрешение.

При использовании метода апертурного синтеза большая антенна разбивается на N элементов. Падающие волны, отразившись от каждого элемента, попадают в фокус антенны в фазе. Поэтому высокочастотное напряжение V(t) в фокусе может быть записано в виде суммы составляющих ΔV i (t) от отдельный элементов:

Мощность Р на выходе приёмника большой антенны пропорциональна среднему значению квадрата напряжения:

Из формулы (2) видно, что результат измерений содержит слагаемые, зависящие от сигналов, получаемых только от пар элементов. Каждое слагаемое может быть измерено с помощью двух малых антенн размером, равным элементу апертуры, находящихся в положениях i и k, и корреляционного (перемножающего) приёмника. Если наблюдаемый участок неба не содержит переменных источников, то такой интерферометр можно использовать для последовательного измерения членов ряда (2).

Отрезок линии восток-запад на поверхности Земли, видимый со стороны удалённого источника, за 12 ч поворачивается на 180°. Если все элементы антенной решётки на этом отрезке следят за источником, то за 12 ч можно синтезировать круглую апертуру в плоскости, перпендикулярной оси вращения Земли, с диаметром, равным длине отрезка. Ширина синтезированной диаграммы в любом направлении обратно пропорциональна проекции апертуры на это направление. Ухудшение разрешающей способности в направлениях, близких к плоскости экватора, устраняется при использовании Т-образной антенной решётки с отрезками, ориентированными в направлениях восток-запад и север-юг (рис.).

Современные системы апертурного синтеза состоят из большого числа полноповоротных антенн и одновременно действующих независимых корреляционных интерферометров, что значительно сокращает время наблюдений. Вращаясь вместе с Землёй, каждый интерферометр измеряет большое число слагаемых ряда (2). Для многоэлементных интерферометров метод апертурного синтеза позволяет синтезировать луч с такой шириной, которая может быть получена с апертурой, имеющей размеры, сравнимые с размерами антенной решётки.

Для более полного извлечения информации из результатов измерений используются априорные сведения о яркости неба. Такая априорная информация позволяет применять системы далеко разнесённых антенн, а также строить карты неба, используя только амплитудные измерения, когда сведения о фазе ненадёжны или отсутствуют.

Первые работы с использованием для апертурного синтеза небольших подвижных антенн были выполнены в Кембридже (Великобритания) в 1954 году. В Сиднее (Австралия) в 1956 году впервые использовалось вращение Земли для синтеза двумерной решётки с помощью линейной. Наиболее известная система апертурного синтеза - антенная решётка VLA (Very Large Array) в штате Нью-Мексико (США), завершена в 1981 году. Она состоит из 27 полноповоротных параболоидов диаметром 25 м каждый, которые могут перемещаться вдоль трёх 21-километровых рельсовых путей, проложенных в виде буквы Y. Угловое разрешение этой системы на длине волны 1,3 см составляет 0,05".

Метод апертурного синтеза используется также в интерферометрах, образованных антеннами, разнесёнными на сотни и тысячи километров (радиоинтерферометры со сверхдлинными базами). Это позволяет синтезировать апертуры, сравнимые с размерами Земли, и получать угловое разрешение порядка 0,001", намного превосходящее достигнутое в оптической астрономии. В перспективе - создание апертур Земля-космос, часть элементов которых будет размещена на космических аппаратах (проект «Радиоастрон», Россия).

Лит.: Kraus J.D. Radio astronomy. 2nd ed. Powell, 1986; Христиансен У., Хёгбом И. Радиотелескопы. М., 1988.

Угловая разрешающая способность – важнейшая характеристика любой телескопической системы. Оптика утверждает, что это разрешение однозначно связано с длиной волны, на которой осуществляется наблюдение, и с диаметром входной апертуры телескопа. С большими диаметрами, как известно, большая проблема. Вряд ли когда-нибудь будет построен телескоп больше этого .
Одним из способов значительного увеличения разрешающей способности является применяемый в радиоастрономии и радиолокации метод синтезирования больших и сверхбольших апертур. В миллиметровом диапазоне самую большую апертуру - 14 км - обещают формировать 66-ю антеннами проекта ALMA в Чили.

Перенос методов апертурного синтеза в оптическую область, где длины волн на несколько порядков меньше, чем у радиолокаторов, связан с развитием техники лазерного гетеродинирования .

1.Физические основы формирования изображений.

Не будет ошибкой сказать, что изображение в любом оптическом устройстве формируется дифракцией света на входной апертуре, и более ничем. Посмотрим на изображение объекта из центра апертуры. Угловое распределение яркости изображения бесконечно удаленного точечного источника света (как, впрочем, и любого другого) будет одинаково для линзы и камеры-обскуры равного диаметра. Отличие линзы от обскуры заключается лишь в том, что линза переносит формируемое своей апертурой изображение из бесконечности в свою фокальную плоскость. Или, говоря иначе, производит фазовое преобразование входного плоского волнового фронта в сферически сходящийся. Для удаленного точечного источника и круглой апертуры изображение - это всем известная картина Эйри с кольцами .


Угловой размер диска Эйри можно в принципе уменьшить и как будто увеличить разрешение (по рэлеевскому критерию), если задиафрагмировать апертуру специальным образом. Существует такое распределение пропускания по радиусу, при котором центральный диск теоретически можно сделать произвольно малым. Однако при этом световая энергия перераспределяется по кольцам и контраст сложного изображения падает до нуля.

С математической точки зрения процедура формирования дифракционного изображения сводится к двухмерному преобразованию Фурье от входного светового поля (в скалярном приближении поле описывается комплексной функцией координат и времени). Любое изображение, регистрируемое глазом, экраном, матрицей или другим квадратичным по интенсивности приемником – не что иное, как двухмерный амплитудный спектр ограниченного апертурой светового поля, испускаемого объектом. Легко получить ту же самую картинку Эйри, если взять квадратную матрицу из одинаковых комплексных чисел (имитирующих плоский волновой фронт от удаленной точки), «вырезать» из нее круглую «апертуру», обнулив края, и сделать Фурье-преобразование всей матрицы.

Короче говоря, если каким-то образом записать поле (синтезировать апертуру) на достаточно большой области без потери амплитудной и фазовой информации, то для получения изображения можно обойтись без гигантских зеркал современных телескопов и мегапиксельных матриц, просто вычисляя Фурье-образ полученного массива данных.

2. Локация спутников и сверхразрешение.

Будем наблюдать движущийся поперек луча зрения стабилизированный объект, подсвеченный непрерывным когерентным лазерным источником. Регистрация отраженного от него излучения производится гетеродинным фотоприемником с небольшой апертурой. Запись сигнала в течение времени t эквивалентна реализации одномерной апертуры длиной vt, где v – тангенциальная скорость движения объекта. Легко оценить потенциальную разрешающую способность такого метода. Посмотрим на околоземный спутник в верхней элонгации, летящий на высоте 500 км со скоростью 8 км/сек. За 0,1 секунды записи сигнала получим «одномерный телескоп» размером 800 метров, теоретически способный рассмотреть в видимом диапазоне детали спутника величиной в доли миллиметра. Неплохо для такого расстояния.

Разумеется, отраженный сигнал на таких расстояниях ослабевает на много порядков. Однако гетеродинный прием (когерентное смешивание с опорным излучением) в значительной степени компенсирует это ослабление. Ведь, как известно, выходной фототок приемника в этом случае пропорционален произведению амплитуд опорного излучения и приходящего сигнала. Будем увеличивать долю опорного излучения и тем самым усиливать весь сигнал.

Можно посмотреть с другой стороны. Спектр записанного сигнала с фотоприемника представляет собой набор доплеровских компонент, каждая из которых есть сумма вкладов от всех точек объекта, имеющих одинаковую лучевую скорость. Одномерное распределение отражающих точек на объекте определяет распределение спектральных линий по частоте. Полученный спектр и является по сути одномерным «изображением» объекта по координате «доплеровский сдвиг». Две точки нашего спутника, расположенные на расстоянии 1 мм друг от друга в плоскости, перпендикулярной лучу зрения, имеют разность лучевых скоростей порядка 0,01-0,02 мм/сек. (Отношение этой разности к скорости спутника равно отношению расстояния между точками к расстоянию до спутника). Разность доплеровских частот этих точек для видимой длины волны 0,5 мк составит (f=2V/λ) порядка 100 Гц. Спектр (доплеровское изображение) от всего микроспутника, скажем, размером 10 см, уложится в диапазон 10 кГц. Вполне измеримая величина.

Можно посмотреть и с третьей стороны. Эта технология представляет собой не что иное, как запись голограммы, т.е. интерференционной картины, возникающей при смешивании опорного и сигнального полей. Она содержит в себе амплитудную и фазовую информацию, достаточную для восстановления полного изображения объекта.

Таким образом, подсвечивая спутник лазером, регистрируя отраженный сигнал и смешивая его с опорным лучом от того же лазера, получим на фотоприемнике фототок, зависимость которого от времени отражает структуру светового поля вдоль «одномерной апертуры», длину которой, как уже было сказано, можно сделать достаточно большой.

Двухмерная апертура, конечно, гораздо лучше и информативнее. Расставим равномерно несколько фотоприемников поперек движения спутника и запишем таким образом отраженное поле на площади vt*L, где L – расстояние между крайними фотоприемниками, которое в принципе ничем не ограничено. Например, те же 800 метров. Тем самым мы синтезируем апертуру «двухмерного телескопа» размером 800*800 метров. Разрешение по поперечной координате (L) будет зависеть от количества фотоприемников и расстояния между ними, по другой, «временной» координате (vt) – от ширины полосы излучения лазера и частоты оцифровки сигнала с фотоприемника.

Итак, мы имеем записанное световое поле на очень большой площади и можем делать с ним все, что угодно. Например, получить двухмерное изображение очень маленьких объектов на очень большом расстоянии без всяких телескопов. Или можно восстановить трехмерную структуру объекта путем цифровой перефокусировки по дальности.

Разумеется, реальная трехмерная конфигурация отражающих точек на объекте не всегда совпадает с их «доплеровским» распределением по лучевым скоростям. Совпадение будет, если эти точки находятся в одной плоскости. Но и в общем случае из «доплеровского изображения» можно извлечь много полезной информации.

3. Что было раньше.

Американская DARPA некоторое время назад финансировала программу , суть которой состояла в реализации подобной технологии. Предполагалось с летящего самолета лоцировать со сверхвысоким разрешением объекты на земле (танки, например), были получены некие обнадеживающие данные. Однако эту программу то ли закрыли, то ли засекретили в 2007 году и с тех пор про нее ничего не слышно. В России тоже кое-что делалось. Вот можно посмотреть картинку, полученную на длине волны 10,6 мк.

4.Трудности технической реализации на длине волны 1,5 мк.

По зрелом размышлении я решил здесь ничего не писать. Слишком много проблем.

5. Кое-какие первичные результаты.

Пока с трудом удалось «рассмотреть» с расстояния 300 метров детали плоского диффузно отражающего металлического объекта размером 6 на 3 мм. Это был кусочек какой-то печатной платы, вот фотка:


Объект вращался вокруг оси, перпендикулярной лучу зрения, регистрация отраженного сигнала происходила примерно в момент максимального отражения (блика). Пятно от лазера, освещающее объект, имело размер около 2 см. Использовались всего 4 фотоприемника, разнесенные на 0,5 метра. Размер синтезированной апертуры оценивается величиной 0,5 м на 10 м.
Собственно, на всякий случай сами записанные сигналы (слева) и их спектры (справа) в относительных единицах:


Из предыдущей фотки объекта фотошопом выделены только интересующие нас освещаемые и отражающие участки, которые требуется увидеть:


Изображение, восстановленное двухмерным фурье-преобразованием из 4 сигналов и смасштабированное для сравнения:


Эта картинка вообще-то состоит всего из 4 строк (и около 300 столбцов), вертикальное разрешение изображения, соответственно, около 0,5 мм, однако темный уголок и обе круглые дырки вроде как видны. Горизонтальное разрешение – 0,2 мм, такова ширина токопроводящих дорожек на плате, видны все пять штук. (Обычный телескоп должен быть двухметрового диаметра, чтобы увидеть их в ближнем ИК).

По правде говоря, полученное разрешение пока далеко от теоретического предела, так что неплохо бы довести до ума эту технологию. Дьявол, как известно, кроется в деталях, а деталей здесь очень много.

Спасибо за внимание.

Проблема радикального повышения разрешающей способности в направлении, перпендикулярном оси ДНА, особенно актуальна для РЛС обзора поверхности под летательным или космическим аппаратом, поскольку в направлении оси ДНА достижимо очень высокое разрешение при соответствующем расширении спектра сигнала РЛС. Если излучение антенны направлено перпендикулярно вектору скорости РЛС, т. е. осуществляется боковой обзор, то перемещение антенны относительно облучаемой поверхности позволяет получить при оптимальной обработке отраженных сигналов очень высокое разрешение и в направлении, перпендикулярном оси ДНА. Таким образом решается задача получения радиолокационного изображения высокой четкости.

Повышение разрешения при боковом обзоре можно рассматривать как результат сжатия ДНА при оптимальной обработке (аналогично сжатию импульса с внутриим-пульсной модуляцией) или как формирование диаграммы синтезированной антенной решеткой, образующейся при перемещении антенны РЛС относительно облучаемой поверхности.

Рассмотрим принцип действия и потенциальные возможности самолетной РЛС бокового обзора. Антенна станции вытянута вдоль оси самолета и формирует ДНА, узкую в горизонтальной и широкую в вертикальной плоскости, ориентированную перпендикулярно оси самолета. Обычно создаются две идентичных ДНА по обе стороны оси самолета, что в данном случае несущественно.

При длине волны излучаемых РЛС колебаний и продольном размере антенны ширина ДНА в горизонтальной плоскости . Считая для простоты излучение ограниченным в горизонтальной плоскости углом , найдем время облучения точки поверхности на расстоянии D от РЛС:

где - скорость самолета, которая считается постоянной; - линейная ширина ДНА на расстоянии D от РЛС. Радиальная составляющая скорости относительно точек облучаемой поверхности (рис. 18.7,а), где - угол между осью ДНА в горизонтальной плоскости и направлением на рассматриваемую точку . Таким образом, на оси ДНА , а на краях достигает максимального значения . Так как в РЛС бокового обзора применяются узкие ДНА, то можно считать . За счет радиальной составляющей скорости возникает доплсровский сдвиг частоты отраженного сигнала, изменяющийся по линейному закону от до . Таким образом, при пролете расстояния принимается частотно-модулированный импульс длительностью (рис. 18.7,б) с девиацией частоты .

При оптимальной согласованной обработке такой импульс может быть сжат до импульса длительностью, обратной ширине спектра сигнала и приближенно равной . Следовательно, . Так как , то . Заметим, что на выходе сжимающего фильтра огибающая импульса имеет форму и его длительность (измеряемая на уровне 0,64 максимального значения) определяет предельное разрешение по времени, которое соответствует расстоянию , разрешаемому в направлении вектора V, перпендикулярном оси ДНА.

Следовательно, при когерентной обработке разрешаемое расстояние не зависит от дальности и ограничено значением, равным . Этот вывод, сначала кажущийся парадоксальным, становится понятным при анализе разрешающей способности РЛС бокового обзора с точки зрения синтезирования раскрыва.

Если все отраженные сигналы на протяжении когерентно (т. е. с учетом фазы) суммировать, то можно сформировать (синтезировать) ДНА шириной

причем коэффициент 2 учитывает набег фазы при прохождении сигналом расстояния D «туда и обратно».

Разрешаемое по направлению полета (перпендикулярно оси ДНА) расстояние

Отрезок пути L, на котором производится когерентное суммирование отраженных сигналов, определяет размер синтезированного раскрыва , так как такое суммирование аналогично приему сигнала на сннфазную антенну с размером раскрыва, равным . Отсюда становится ясно, почему разрешаемое расстояние снижается, т. е. разрешение растет при уменьшении раскрыва реальной антенны и не зависит от D. Это объясняется увеличением синтезированного раскрыва прямо пропорционально ширине ДНА РЛС и дальности рассматриваемой точки .

Однако с увеличением растут и трудности обеспечения когерентности при обработке сигналов. Поэтому антенны РЛС бокового обзора для получения малых значений должны иметь значительные размеры раскрыва , что позволяет реализовать когерентную обработку, обеспечивающую приближение к потенциальной разрешающей способности системы с синтезированным раскрывом, определяемой формулой (18.27).

При переходе от непрерывного сигнала к импульсному с периодом синтезированная антенна аналогична антенной решетке, расстояния между элементами которой равны . В РЛС бокового обзора обычно применяется импульсное излучение, поэтому такие РЛС называют станциями с синтезированной антенной решеткой.

С излучением каждого импульса антенна РЛС становится элементом синтезированной решетки, дальность которого от рассматриваемой точки поверхности равна кратчайшему расстоянию (рис. 18.7, а) только в тот момент, когда рассматриваемая точка оказывается на оси ДНА. На краях синтезированной решетки расстояние отличается от на

Этой разности расстояний соответствует максимальная азовая задержка сигнала . Если в процессе полета изменяющиеся фазовые задержки фиксируются и учитываются при обработке, то синтезированные решетки называются фокусированными. Система обработки сигнала в этом случае получается сложной, поэтому необходимо выяснить, к каким потерям разрешающей способности приводит отказ от «фокусировки», т. е. переход к нефокусированной обработке без учета фазовых сдвигов. В этом случае допустима разность хода на концах синтезированного раскрыва , что соответствует максимальному фазовому сдвигу . Из этого условия можно найти размер эффективного раскрыва синтезированной антенны. Из рис. 18.7, в видно, что и, следовательно,

Таким образом, при отсутствии фокусировки ширина ДНА синтезированного раскрыва размером , а соответствующее линейное разрешение

Для обработки сигнала без коррекции (фокусировки) пригоден обычный экспоненциальный накопитель с линией задержки на период повторения импульсов . Ясно, что названия фокусированная и сированная системы появились по аналогии с оптической системой, в которой при полностью открытой диафрагме необходима фокусировка объектива (наводка на резкость).

При сильном диафрагмировании достаточная четкость (резкость) обеспечивается без фокусировки при постоянной установке объектива на бесконечность.

Следовательно, при фокусированной обработке сигнала (фокусированный раскрыв) достижимо максимальное линейное разрешение в направлении, перпендикулярном ДНА, независимо от дальности при нефокуси-рованной обработке (нефокусированный раскрыв) для обычной антенны с размером раскрыва разрешение .

Зависимость разрешающей способности от дальности D для этих случаев представлена на рис. 18.8.

Таким образом, для полной реализации потенциальных возможностей синтезированной антенны необходима обработка сигнала с внесением фазовых поправок в соответствии с положением рассматриваемой точки относительно антенны РЛС. В импульсных РЛС сигнал повторяется с периодом и поправки вводятся дискретно в моменты времени , отсчитываемые от времени приема среднего импульса, отраженного в тот момент времени, когда данная точка находится на траверсе пролетающего самолета.

Согласованный фильтр для сигнала точечной цели при известной дальности и скорости РЛС относительно цели соответствует схеме когерентного фильтра для пачки импульсов, при этом амплитуды импульсов умножаются на весовые коэффициенты и смещаются по фазе на значение поправки . Такая обработка (фокусировка) требуется для каждого элемента дальности, т. е. необходим фильтр для каждой дальности (дискретность зависит от разрешающей способности по дальности, определяемой шириной спектра сигнала), причем параметры фильтра должны изменяться при изменении скорости перемещения РЛС.

Требования к устройству обработки задаются прежде всего временем синтезирования, равным в фокусированных системах . Так, при скорости самолета , заданном разрешении на дальности при работе РЛС на волне требуемый размер синтезированной апертуры . В этом случае . При частоте повторения импульсов число суммируемых при обработке сигналов для каждого элемента дальности, число которых в полосе обзора по дальности может достигать . Число уровней квантования определяет разрядность устройства обработки . Таким образом, общий объем обрабатываемой информации . При наличии квадратурных каналов значение удваивается и имеет порядок 108 бит. С учетом коррекции фазы в каждом периоде повторения требумое быстродействие обработки в подобных системах достигает .

Несмотря на относительную сложность, цифровая реализация устройств обработки при использовании современной элементной базы возможна, особенно при осуществлении обработки на видеочастоте. Достоинством цифровой обработки является возможность получения изображения местности под самолетом или спутником в реальном времени.

Если допустима задержка при получении изображения (например, при картографировании), то целесообразно применять оптические методы обработки сигналов при синтезировании раскрыва, поскольку оптические устройства обеспечивают многоканальную когерентную обработку сигналов сразу для всех элементов дальности.

Принцип обработки заключается в следующем. Принимаемые сигналы фиксируются на фотопленке, протягиваемой со скоростью, пропорциональной скорости самолета V, при этом строки дальности располагаются поперек пленки. На определенном расстоянии от начала каждой строки, пропорциональном дальности рассматриваемой точки D, записываются отраженные сигналы в течение времени запись в продольном направлении (вдоль пленки) в соответствующем масштабе передает распределение сигналов вдоль синтезируемого раскрыва .

После проявления (время проявления и определяет задержку в обработке) пленка протягивается перед окном оптического устройства, одновременно облучаясь однородным когерентным световым пучком. Плоская световая волна, проходя через пленку, модулируется по амплитуде и фазе записанным сигналом. Размеры пятна, полученного на оптическом экране или другой фотопленке на выходе оптического фильтра, соответствуют ширине диаграммы направленности синтезированной антенны , которая во много раз меньше ширины диаграммы направленности реальной антенны . Подбором параметров элементов (линз) оптического фильтра можно обеспечить когерентную обработку и получить высокую четкость синтезированного радиолокационного изображения. Именно с помощью РЛС бокового обзора с синтезированием раскрыва, расположенной на искусственном спутнике Венеры, советским исследователям удалось получить четкое радиолокационное изображение этой планеты, закрытой для оптического наблюдения.

Одним из важных направлений использования РЛС является их применение на борту летательного аппарата, осуществляющих обзор земной поверхности. В зависимости от решаемых задач, требуемой величины зоны обзора и время обзора различают следующие виды обзора:

· полосовой обзор (переднебоковой обзор);

· секторный обзор;

· телескопический обзор.

Возможны и другие виды обзора, которые являются либо частными случаями вышеперечисленных обзоров, либо их комбинациями.

Мерой углового положения излучающего объекта и параметром, позволяющим измерить угловые координаты и обеспечить разрешение по углу, является частота Доплера. Благоприятные условия для решения этих задач создаются при условии бокового обзора земной поверхности летательного аппарата, выдерживающего курс, частоту и скорость.

Детальность радиолокационного изображения земной поверхности зависит от разрешающей способности в поперечном по отношению к РЛС направлению, а так же от разрешающей способности вдоль линии пути.

Разрешающая способность в поперечном направлении (тангенциальная разрешающая способность) зависит от полосы зондирующих сигналов и угла места объектов в поперечной плоскости.

Разрешающая способность вдоль линии пути различна при некогерентной и когерентной обработке. В первом случае она определяется шириной диаграммы направленности, соответствующей раскрыву размещенной на летательном аппарате антенны. При когерентной обработке, она может быть существенно увеличена соответственно синтезированному раскрыву, определяемому величиной перемещения летательного аппарата за время обработки.

При построении радиолокаторов с синтезированной аппаратурой на борту летательного аппарата устанавливаются слабонаправленная антенна, осуществляющая боковой обзор пространства (рис.6.1). Сигналы, принятые от различных точек траектории запоминаются и обрабатываются, как в антенной решетке, где они складываются синфазно, образуя максимум амплитуды суммарного сигнала.

Синтезированная антенна образуется перемещением одного элемента, ось диаграммы направленности которого ориентирована перпендикулярно прямолинейной траектории полета (рис.6.2).

При использовании импульсных сигналов они принимаются и запоминаются в точках траектории, отстоящих друг относительно друга на расстоянии где - скорость полета; - период повторения импульсов. Далее сигналы суммируются в схеме, изображенной на рис.2. Расстояние , на котором происходит суммирование, представляет собой апертуру синтезированной антенны (рис.6.3).

Суммирование сигналов осуществляется в линии задержки ЛЗ. Различают нефокусированные (рис.6.4.) и фокусированные синтезируемые антенны. Особенностью нефокусированной антенны является суммирование принимаемых сигналов несинфазно. Эквивалентная длинна ограничивается возможностью суммирования сигналов приблизительно в фазе, то есть когда разность расстояний от РЛС до цели не превосходит λ/8 (рис 6.5).

Ввиду малости второго слагаемого, получим

Ширина диаграммы направленности такой антенны

(6.3)

В этом случае тангенциальная разрешающая способность

(6.4)

улучшилась по сравнению с панорамной антенной

где - разрешающая способность по азимуту.

Теперь пропорциональна не R, а .

В фокусированных антеннах в антеннах в цепь элементов решетки вводятся фазовые сдвиги для компенсации перемещения РЛС относительно цели (рис.6.6).

Размер реальной антенны в горизонтальной плоскости равен L, ширина ее диаграммы

Длинна синтезированной антенны равна протяженности траектории полета, на которой РЛС облучает цепь (рис.6.7).

Ширина диаграммы направленности антенны равна

.

Тангенциальная разрешающая способность

. (6.7)

Не зависит от дальности и равна половине размера реальной антенны.

Традиционным путем РЛС с синтезированной антенной построить невозможно так как требуется значительные: длина фокусированной антенны (сотни м); задержка сигналов в линии задержки (десятки с); число суммируемых импульсов (десятки тысяч).

На практике для построения РЛС с синтезированной антенной используется эффект Доплера и согласованная фильтрация. Информация о частоте Доплера используется как мера углового положения. Пусть вдоль прямой х, параллельной линии пути летательного аппарата, лежащей в полосе бокового обзора, расположены излучатели А непрерывных монохромических колебаний частоты f 0 (рис 6.8).

В каждый момент времени излучаемые колебания можно различать по частоте Доплера

. (6.8)

Если оценивать изменения во времени расстояния от приемника до точки А, можно определить закон модуляции сигналов

где - момент времени, когда приемник находиться на кратчайшем расстоянии r 0 от точки А. Квадратному изменению времени запаздывания соответствует линейное изменение мгновенной частоты

(6.10)

Таким образом принимаемый сигнал оказывается частотно-модулированным. При обработке в оптимальном фильтре, согласованном с ожидаемым частотно-модулированным сигналом наблюдается сжатие сигнала. Длительность сжатого сигнала равна

(6.11)

где - длительность импульсной характеристики фильтра. Аналогичный сжаты импульс будет получен, и для сигнала, приходящий от любой другой точки А; временной интервал между этими импульсами будет = где - скорость движения цели. Минимально разрешаемый временной интервал определяется длительностью сжатого импульса

Отношение / = можно рассматривать как меру синтезированного углового разрешения

(6.13)

где = - размер эквивалентного синтезированного раскрыва, образованного при перемещении точки приема за длительность когерентного накопления . Сжатие позволяет получить разрешающую способность как у фокусированной антенны.

Для обеспечения разрешающей способности по дальности необходимо использовать импульсное излучение, причем импульсы должны быть когерентны между собой.

Таким образом, РЛС с синтезированной апертурой должна содержать

1. когерентно - импульсную РЛС с истинной когерентностью;

2. систему обработки сигналов, которая должна производить оптимальную обработку по азимуту (согласованную фильтрацию) в каждом элементе разрешению по дальности.

Один из вариантов такого локатора изображен на рис.6.9.

Могут применятся и другие схемы, однако сигналы должны быть когерентны (например вырезка из одного и того же гармонического колебания).

Выходным элементом приемника когерентно- импульсной РЛС является фазовый детектор, выходное напряжение которого определяется следующим образом

где , - амплитуды напряжений когерентного гетеродина и выходного сигнала;

Начальные фазы колебаний;

Доплеровское смещение частот.

Сигнал от точечной цели на выходе фазового детектора представляет собой импульсную последовательность с огибающей, повторяющей квадрат диаграммы направленности реальной антенны, и амплитудной модуляцией частотой Доплера (рис.6.10) Если в течении периода повторения Т п будет несколько целей, то согласованная фильтрация проводиться по каждой из них.

Существуют следующие способы построения соответствующей аппаратуры:

1. Запись сигналов с фазового детектора на фотопленку с последующей оптической обработкой.

2. Цифровая обработка сигналов.

В основу цифровой обработки положено оптимальное обнаружение пачки радиоимпульсов со случайной начальной фазой. Оптимальная обработка сводится к вычислению модуля корреляционного интеграла. Но так как сигнал не непрерывный, а дискретный, то вычисляется не интеграл, а сумма

где - выработка входного сигнала;

– опорная функция;

n – номер отсчета сигнала изображения;

k – номер отсчета опорной функции;

N – число дискретных значений опорной функции.

В случае цифровой обработки структурной схемы приемника имеет вид, изображенный на рис. 6.11.

Для нахождения действительной и мнимой частей представления входного сигнала устройство обработки строится с квадратурными каналами (рис.6.12). На рис. 6.13 изображена структура цифровой обработки в одном элементе разрешения.

В схеме выполняются операции, предусмотренные согласно формуле для S вых (n): находятся действительные и мнимые части произведения под знаком суммы для каждого из N значений опорной функции и суммируются.

Капитан М. Виноградов,
кандидат технических наук

Современные радиолокационные средства, устанавливаемые на самолетах и космических аппаратах, в настоящее время представляют один из наиболее интенсивно развивающихся сегментов радиоэлектронной техники. Идентичность физических принципов, лежащих в основе построения этих средств, делает возможным рассмотрение их в рамках одной статьи. Основные различия между космическими и авиационными РЛС заключаются в принципах обработки радиолокационного сигнала, связанными с различным размером апертуры, особенностями распространения радиолокационных сигналов в различных слоях атмосферы, необходимостью учета кривизны земной поверхности и т. д. Несмотря на подобного рода различия, разработчики РЛС с синтезированием апертуры (РСА) прилагают все усилия для того, чтобы добиться максимальной схожести возможностей данных средств разведки.

В настоящее время бортовые РЛС с синтезированием апертуры позволяют решать задачи видовой разведки (вести съемку земной поверхности в различных режимах), селекции мобильных и стационарных целей, анализа изменений наземной обстановки, осуществлять съемку объектов, скрытых в лесных массивах, обнаружение заглубленных и малоразмерных морских объектов.

Основным назначением РСА является детальная съемка земной поверхности.

Рис. 1. Режимы съемки современных РСА (а — детальный, б - обзорный, в - сканирующий) Рис. 2. Примеры реальных радиолокационных изображений с разрешениями 0,3 м (вверху) и 0,1 м (внизу)

Рис. 3. Вид изображений при разных уровнях детализации
Рис. 4. Примеры фрагментов реальных участков земной поверхности, полученных при уровнях детализации DTED2 (слева) и DTED4 (справа)

За счет искусственного увеличения апертуры бортовой антенны, основной принцип которого заключается в когерентном накоплении отраженных радиолокационных сигналов на интервале синтезирования, удается получить высокое разрешение по углу. В современных системах разрешение может достигать десятков сантиметров при работе в сантиметровом диапазоне длин волн. Аналогичные значения разрешения по дальности достигаются за счет применения внутриимпульсной модуляции, например, линейно-частотной модуляции (ЛЧМ). Интервал синтезирования апертуры антенны прямо пропорционален высоте полета носителя РСА, что обеспечивает независимость разрешения съемки от высоты.

В настоящее время существуют три основных режима съемки земной поверхности: обзорный, сканирующий и детальный (рис. 1). В обзорном режиме съемка земной поверхности осуществляется непрерывно в полосе захвата, при этом разделяют боковой и переднебоковой режим (в зависимости от ориентации главного лепестка диаграммы направленности антенны). Накопление сигнала осуществляется в течение времени, равного расчетному интервалу синтезирования апертуры антенны для данных условий полета носителя РЛС. Сканирующий режим съемки отличается от обзорного тем, что съемка ведется на всей ширине полосы обзора, полосами равными ширине полосы захвата. Данный режим используется исключительно в РЛС космического базирования. При съемке в детальном режиме накопление сигнала осуществляется на увеличенном по сравнению с обзорным режимом интервале. Увеличение интервала осуществляется за счет синхронного с движением носителя РЛС перемещения главного лепестка диаграммы направленности антенны таким образом, чтобы облучаемый участок постоянно находился в зоне съемки. Современные системы позволяют получать снимки земной поверхности и расположенных на ней объектов с разрешениями порядка 1 м для обзорного и 0,3 м для детального режимов. Компания «Сандия» анонсировала создание РСА для тактических БЛА, имеющего возможность вести съемку с разрешением 0,1 м в детальном режиме. Существенное значение на результирующие характеристики РСА (в плане съемки земной поверхности) оказывают применяемые методы цифровой обработки принятого сигнала, важной составляющей которых являются адаптивные алгоритмы коррекции траекторных искажений. Именно невозможность выдерживать в течение длительного времени прямолинейную траекторию движения носителя не позволяет получать в непрерывном обзорном режиме съемки разрешения сопоставимые с детальным режимом, хотя никаких физических ограничений на разрешение в обзорном режиме не существует.

Режим инверсного синтезирования апертуры (ИРСА) позволяет осуществлять синтезирование апертуры антенны не за счет движения носителя, а за счет движения облучаемой цели. При этом речь может идти не о поступательном движении, характерном для наземных объектов, а о маятниковом движении (в разных плоскостях), характерном для плавучих средств, раскачивающихся на волнах. Данная возможность определяет основное назначение ИРСА - обнаружение и идентификация морских объектов. Характеристики современных ИРСА позволяют уверенно обнаруживать даже малоразмерные объекты, такие как перископы подводных лодок. Вести съемку в данном режиме имеют возможность все самолеты, состоящие на вооружении ВС США и других государств, в задачи которых входит патрулирование береговой зоны и акваторий. Получаемые в результате съемки изображения по своим характеристикам аналогичны изображениям, получаемым в результате съемки с прямым (неинверсным) синтезированием апертуры.

Режим интерферометрической съемки (Interferometric SAR - IFSAR) позволяет получать трехмерные изображения земной поверхности. При этом современные системы имеют возможность вести одноточечную съемку (то есть использовать одну антенну) для получения трехмерных изображений. Для характеристики данных изображений помимо обычного разрешения вводится дополнительный параметр, называемый точность определения высоты, или разрешение по высоте. В зависимости от значения данного параметра определяют несколько стандартных градаций трехмерных изображений (DTED - Digital Terrain Elevation Data):
DTEDO.............................. 900 м
DTED1.............................. 90m
DTED2............................ 30m
DTED3.............................. 10m
DTED4............................ Зм
DTED5.............................. 1m

Вид изображений урбанизированной территории (модель), соответствующий различным уровням детализации, представлен на рис. 3.

Уровни 3-5 получили официальное название «данных с высоким разрешением» (HRTe-High Resolution Terrain Elevation data). Определение местоположения наземных объектов на изображениях уровня 0-2 ведется в системе координат WGS 84, отсчет высоты осуществляется относительно нулевой отметки. Система координат изображений с высоким разрешением в настоящий момент не стандартизирована и находится на стадии обсуждения. На рис. 4 представлены фрагменты реальных участков земной поверхности, полученные в результате стереосъемки с различным разрешением.

В 2000 году американский МТКК «Шаттл» в рамках проекта SRTM (Shuttle Radar Topography Mission), целью которого являлось получение картографической информации крупных масштабов, выполнил интерферометрическую съемку экваториальной части Земли в полосе от 60° с. ш. до 56° ю. ш., получив на выходе трехмерную модель земной поверхности в формате DTED2. Для получения детальных трехмерных данных в США разрабатывается проект NGA HRTe? в рамках которого будут доступны изображения уровней 3-5.
Помимо радиолокационной съемки открытых участков земной поверхности, бортовая РЛС имеет возможность получать изображения сцен, скрытых от глаз наблюдателя. В частности, она позволяет обнаруживать объекты, скрытые в лесных массивах, а также, находящиеся под землей.

Проникающая РЛС (GPR, Ground Penetrating Radar) - система дистанционного зондирования, принцип действия которой основан на обработке сигналов, отраженных от деформированных или отличающихся по своему составу участков, находящихся в однородном (или относительно однородном) объеме. Система зондирования земной поверхности позволяет обнаруживать находящиеся на различной глубине пустоты, трещины, заглубленные объекты, выявлять участки различной плотности. При этом энергия отраженного сигнала сильно зависит от поглощающих свойств почвы, размеров и формы цели, степени неоднородности граничных областей. В настоящее время GPR помимо военно-прикладной направленности развился в коммерчески выгодную технологию.

Зондирование земной поверхности происходит путем облучения импульсами с частотой 10 МГц - 1,5 ГГц. Облучающая антенна может находиться на земной поверхности или расположена на борту летательного аппарата. Часть энергии облучения отражается от изменений в подповерхностной структуре земли, большая же часть проникает дальше в глубину. Отраженный сигнал принимается, обрабатывается, и результаты обработки отображаются на дисплее. При движении антенны генерируется непрерывное изображение, отражающее состояние подповерхностных слоев почвы. Так как фактически отражение происходит из-за различия ди-электрических проницаемо-стей различных веществ (или разных состояний одного вещества), то зондированием можно выявлять большое количество естественных и искусственных дефектов в однородной массе подповерхностных слоев. Глубина проникновения зависит от состояния почвы на месте облучения. Уменьшение амплитуды сигнала (поглощение или рассеяние) в значительной мере зависит от ряда свойств почвы, основное из которых - ее электропроводность. Так, оптимальными для зондирования являются песчаные почвы. Гораздо менее пригодны для этого глинистые и очень влажные почвы. Хорошие результаты показывает зондирование сухих материалов, таких как гранит, известняк, бетон.

Разрешениепризондированииможетбыть улучшено за счет повышения частоты излучаемых волн. Однако увеличение частоты отрицательно сказывается на глубине проникновения излучения. Так, сигналы с частотой 500-900 МГц могут проникать на глубину 1-3 м и обеспечивают разрешение до 10 см, а с частотой 80-300 МГц проникают на глубину 9-25 м, но разрешение составляет порядка 1,5 м.

Основным военным назначением РЛС подповерхностного зондирования является обнаружение заложенных мин. При этом РЛС, установленная на борту летательного аппарата, например вертолета, позволяет непосредственно вскрывать карты минных полей. На рис. 5 представлены изображения, полученные с помощью РЛС, установленной на борту вертолета, отражающие расположение противопехотных мин.

Бортовая РЛС, предназначенная для обнаружения и слежения за объектами, скрытыми в лесных массивах (FO-PEN - FOliage PENetrating), позволяет обнаруживать малоразмерные объекты (движущиеся и стационарные), скрытые кронами деревьев. Съемка объектов, скрытых в лесных массивах, ведется аналогично обычной съемке в двух режимах: обзорном и детальном. В среднем в обзорном режиме ширина полосы захвата составляет 2 км, что позволяет получать на выходе изображения участков земной поверхности 2x7 км; в детальном режиме съемка осуществляется участками 3х3 км. Разрешение съемки зависит от частоты и варьируется от 10 м при частоте 20-50 МГц до 1 м при частоте 200-500 МГц.

Современные методы анализа изображений позволяют с достаточно высокой вероятностью обнаруживать и производить последующую идентификацию объектов на полученном радиолокационном изображении. При этом обнаружение возможно на снимках как с высоким (менее 1 м), так и с низким (до 10 м) разрешением, в то время как для распознавания требуются изображения с достаточно высоким (порядка 0,5 м) разрешением. И даже в этом случае можно говорить в большей части только о распознавании по косвенным признакам, поскольку геометрическая форма объекта очень сильно искажена из-за наличия сигнала, отраженного от лиственного покрова, а также вследствие появления сигналов со смещением частоты за счет доплеровского эффекта, возникающего в результате колебания листвы на ветру.

На рис. 6 представлены изо-бражения (оптическое и радиолокационное) одного и того же участка местности. Объекты (колонна машин), невидимые на оптическом изображении, хорошо видны на радиолокационном, однако осуществить идентификацию данных объектов, абстрагировавшись от внешних признаков (движение по дороге, расстояние между машинами и т. д.), невозможно, так как при данном разрешении информация о геометрической структуре объекта отсутствует полностью.

Детальность получаемых радиолокационных изображений позволила реализовать на практике еще ряд особенностей, которые, в свою очередь, сделали возможным решение ряда важных практических задач. К одной из таких задач относится отслеживание изменений, произошедших на некотором участке земной поверхности за определенный период времени - когерентное детектирование. Длительность периода обычно определяется периодичностью патрулирования заданного района. Отслеживание изменений осуществляется на основе анализа покоординатно совмещенных изображений заданного района, полученных последовательно друг за другом. При этом возможны два уровня детализации анализа.

Рис 5. Карты минных полей в трехмерном представлении при съемке в различных поляризациях: модель (справа), пример изображения реального участка земной поверхности со сложной подповерхностной обстановкой (слева), полученного с помощью РЛС, установленной на борту вертолета

Рис. 6. Оптическое (вверху) и радиолокационное (внизу) изображения участка местности с движущейся по лесной дороге колонной автомобилей

Первый уровень предполагает обнаружение значительных изменений и основывается на анализе амплитудных отсчетов изображения, несущих основную визуальную информацию. Чаще всего в эту группу относятся изменения, которые сможет увидеть человек, просматривая одновременно два сформированных радиолокационных изображения. Второй уровень базируется на анализе фазовых отсчетов и позволяет выявлять изменения, невидимые человеческому глазу. К таковым можно отнести появление следов (машины или человека) на дороге, изменение состояния окон, дверей («открыто - закрыто») и т. д.

Другой интересной возможностью РСА, также анонсированной компанией «Сандия», является радиолокационная видеосъемка. В данном режиме дискретное формирование апертуры антенны от участка к участку, характерное для непрерывного обзорного режима, заменено на параллельное многоканальное формирование. То есть в каждый момент времени синтезируется не одна, а несколько (количество зависит от решаемых задач) апертур. Своего рода аналогом количества формируемых апертур является частота кадров в обычной видеосъемке. Данная возможность позволяет реализовывать селекцию движущихся целей на базе анализа полученных радиолокационных изображений, применяя принципы когерентного детектирования, что является по своей сути альтернативой стандартным РЛС, осуществляющим селекцию движущихся целей на основе анализа до-плеровских частот в принятом сигнале. Эффективность реализации подобных селекторов движущихся целей весьма сомнительна ввиду значительных аппаратно-программных затрат, поэтому подобные режимы с большой вероятностью так и останутся не более чем изящным способом решения задачи селекции, несмотря на открывающиеся возможности селектировать цели, движущиеся с очень низкими скоростями (менее 3 км/ч, что недоступно доплеровским СДЦ). Непосредственно видеосъемка в радиолокационном диапазоне в настоящее время также не нашла применения, опять же из-за высоких требований к быстродействию, поэтому действующих образцов военной техники, реализующих на практике данный режим, нет.

Логическим продолжением совершенствования техники съемки земной поверхности в радиолокационном диапазоне является развитие подсистем анализа полученной информации. В частности, важное значение приобретает разработка систем автоматического анализа радиолокационных изображений, позволяющих обнаруживать выделять и распознавать наземные объекты, попавшие в зону съемки. Сложность создания подобных систем связана с когерентной природой радиолокационных изображений, явления интерференции и дифракции в которых приводят к появлению артефактов - искусственных бликов, аналогичных тем, которые появляются при облучении цели с большой эффективной поверхностью рассеяния. Кроме того, качество радиолокационного изображения несколько ниже, чем качество аналогичного (по разрешению) оптического изображения. Все это приводит к тому, что эффективных реализаций алгоритмов распознавания объектов на радиолокационных изображениях в настоящее время не существует, но количество работ, проводимых в данной области, определенные успехи, достигнутые в последнее время, позволяют предположить, что в недалеком будущем можно будет вести речь об интеллектуальных беспилотных разведывательных аппаратах, имеющих возможность производить оценку наземной обстановки по результатам анализа информации, полученной собственными бортовыми средствами радиолокационной разведки.

Другим направлением развития является комплексирование, то есть согласованное объединение с последующей совместной обработкой, информации от нескольких источников. Это могут быть РЛС, ведущие съемку в различных режимах, либо РЛС и другие средства разведки (оптические, ИК, многоспектральные и т. п.).

Таким образом, современные РЛС с синтезированием апертуры антенны позволяют решать широкий спектр задач, связанных с ведением радиолокационной съемки земной поверхности независимо от времени суток и погодных условий, что делает их важным средством добывания информации о состоянии земной поверхности и находящихся на ней объектах.

Зарубежное военное обозрение №2 2009 С.52-56